
Informatics 1 - Computation & Logic:
Tutorial 1

Propositional Logic: Venn Diagrams and Truth
Tables

Week 3: 2-6 October 2017

Please attempt the entire worksheet in advance of the tutorial, and bring
all work with you. Tutorials cannot function properly unless you study
the material in advance. Attendance at tutorials is obligatory; please let
the ITO know if you cannot attend.

You may work with others, indeed you should do so; but you must develop
your own understanding; you can’t phone a friend during the exam. If
you do not master the coursework you are unlikely to pass the exams.

A Venn diagram is, in essence, a visual truth table. In the blank diagrams below,
each circle represents a region in which a given logical atom, is true; R, A, and G,
going clockwise from top left. Where the circles overlap, two or three of the atoms
are true. The diagram here represents the atoms by three lights, which may be on
(true) or off (false), to show the state in each of the eight regions.

1



1. In this exercise, you will be asked to translate between truth tables, logical
expressions, and Venn diagrams.

(a) For the nine examples, shade in the appropriate regions of the Venn dia-
gram to show the states in which the expression is true.

R ¬A A ∧G

G ∨R A→ R G⊕ A

A↔ G > ⊥
You can check your answers using the Venn Diagram maker at

https://www.inf.ed.ac.uk/teaching/courses/inf1/cl/tools/venn/,
but please work them out for yourself first.

2

https://www.inf.ed.ac.uk/teaching/courses/inf1/cl/tools/venn/


(b) Next, look at these truth tables, and shade in the Venn diagram accord-
ingly; then, see if you can figure out corresponding logical expression; note
that while there is only one correct diagram for each truth table, there are
infinitely many equivalent expressions. Shorter expressions are in general
to be preferred here to longer ones.

R A G Exp: (R ? A : G)
> > > >
> > ⊥ >
> ⊥ > ⊥
> ⊥ ⊥ ⊥
⊥ > > >
⊥ > ⊥ ⊥
⊥ ⊥ > >
⊥ ⊥ ⊥ ⊥

R A G Exp: (R ∨G) ? (R ∧G) : A
> > > >
> > ⊥ ⊥
> ⊥ > >
> ⊥ ⊥ ⊥
⊥ > > ⊥
⊥ > ⊥ >
⊥ ⊥ > ⊥
⊥ ⊥ ⊥ ⊥

R A G Exp: G ? (A ∧ ¬R) : (A→ R)
> > > ⊥
> > ⊥ >
> ⊥ > ⊥
> ⊥ ⊥ >
⊥ > > >
⊥ > ⊥ ⊥
⊥ ⊥ > ⊥
⊥ ⊥ ⊥ >

R A G Exp: G ? ¬R ∨A : A
> > > >
> > ⊥ >
> ⊥ > ⊥
> ⊥ ⊥ ⊥
⊥ > > >
⊥ > ⊥ >
⊥ ⊥ > >
⊥ ⊥ ⊥ ⊥

3



(c) Next, given the Venn diagram, try to complete the truth table and the
expression.

R A G
Exp: ((R ∧G) ∨ (A ∧ ¬R ∧ ¬G))

∨¬(R→ A)
> > > >
> > ⊥ ⊥
> ⊥ > >
> ⊥ ⊥ >
⊥ > > ⊥
⊥ > ⊥ >
⊥ ⊥ > ⊥
⊥ ⊥ ⊥ ⊥

R A G
Exp: (G→ A)∧
¬(R ∧A ∧ ¬G)

> > > >
> > ⊥ ⊥
> ⊥ > ⊥
> ⊥ ⊥ >
⊥ > > >
⊥ > ⊥ >
⊥ ⊥ > ⊥
⊥ ⊥ ⊥ >

4



2. By now, you may be getting a feel for how Venn diagrams are combined by
different operators. For this question, shade in the middle diagram to combine
the left and right diagrams on the basis of the given operator. Work out the
correct shading visually, then work out logical expressions and check your work
using the Venn diagram generator.

A⊕G ∨ R↔ G

G ∨ A ∧ G ∨R

G ∨ R ∧ A

5



3. Now, you have probably noticed something interesting about the last two an-
swers - well done! You’ve just discovered the distributivity of disjunction over
conjunction! This identity is one of the laws of Boolean Algebra, which we use
to reason about logical expressions.

a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c)

Here are some more expressions to diagram. See how many more identities
you can find, among the expressions on this question, and among the other
expressions on this sheet.

¬⊥ (G→ A) ∧ (A→ G) ¬(A→ R)

A ∧ ¬A ¬¬G ¬G ∧ ¬A

G ∨ > ¬A ∨R A ∨ ¬A

6



¬(A ∧G) A ∧ ⊥ A ∧ ¬R

¬> ¬A ∨ ¬G R ∨ ⊥

R ∧ > ¬(G ∨ A) (R→ A)→ G

Identities discovered:

¬(a→ b) = a ∧ ¬b a↔ b = (a→ b) ∧ (b→ a) a→ b = ¬a ∨ b

¬(a ∨ b) = ¬a ∧ ¬b ¬(a ∧ b) = ¬a ∨ ¬b
¬0 = 1 ¬¬a = a ¬1 = 0

a ∨ 1 = 1 a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) a ∧ 0 = 0

a ∨ 0 = a a ∨ ¬a = 1 a ∧ ¬a = 0 a ∧ 1 = a

7



4. Look up the following terms (MML §6.2.4 or on the internet or elsewhere) and
describe, in words, when an expression in propositional logic is:

(a) Satisfiable:

An expression is satisfiable IFF there exists some valuation of its atoms for
which it is true

(b) Tautologous:

An expression is tautologous IFF it is true for all valuations of its atoms

(c) Inconsistent:

An expression is inconsistent IFF it is false for all valuations of its atoms

(d) Contingent:

An expression is contingent IFF it is satisfiable but not tautologous; that is,
it is true for some valuations but not all.

5. Construct truth tables for the following expressions of propositional logic, and
use these to decide whether the expressions are satisfiable, tautologous, contin-
gent, or inconsistent:

(a) (R→ A) ∨ (¬A ∨ ¬R)

Draw the truth table here:

R A ¬R ¬A R→ A (¬R ∨ ¬A) EXP
> > ⊥ ⊥ > ⊥ >
> ⊥ ⊥ > ⊥ > >
⊥ > > ⊥ > > >
⊥ ⊥ > > > ⊥ >

This expression is
SATISFIABLE/TAUTOLOGOUS/CONTINGENT/INCONSISTENT

8



(b) R→ (A ∧ (R ∨ A))

Draw the truth table here:

R A R ∨ A (A ∧ (R ∨ A)) EXP
> > > > >
> ⊥ > ⊥ ⊥
⊥ > > > >
⊥ ⊥ ⊥ ⊥ >

This expression is
SATISFIABLE/TAUTOLOGOUS/CONTINGENT/INCONSISTENT

(c) (¬R ∧ A) ∨G⊕ ((R ∨ ¬A)→ G)

Draw the truth table here:

R A G ¬R ¬A ¬R ∧A R ∨ ¬A (¬R ∧A) ∨G ((R ∨ ¬A)→ G) EXP
> > > ⊥ ⊥ ⊥ > > > ⊥
> > ⊥ ⊥ ⊥ ⊥ > ⊥ ⊥ ⊥
> ⊥ > ⊥ > ⊥ > > > ⊥
> ⊥ ⊥ ⊥ > ⊥ > ⊥ ⊥ ⊥
⊥ > > > ⊥ > ⊥ > > ⊥
⊥ > ⊥ > ⊥ > ⊥ > > ⊥
⊥ ⊥ > > > ⊥ > > > ⊥
⊥ ⊥ ⊥ > > ⊥ > ⊥ ⊥ ⊥

This expression is
SATISFIABLE/TAUTOLOGOUS/CONTINGENT/INCONSISTENT

9



Tutorial Activities
1. First take 15 minutes to compare answers to questions 1-5 with a buddy, then

check that your group agrees on the answers.

Ask one of the tutors if you have questions.

2. The main activity for this tutorial is to introduce you to a kind of reasoning,
taking you from particular examples to a more general understanding, that is
common throughout informatics.

In lectures we have shown that ⊕ and↔ are associative and commutative, and
that A⊕B ⊕C = A↔ B ↔ C is true iff the string abc has odd parity1, where
a = 1 iff A = >, and so on.
In this question you will explore expressions such as:

A⊕B ⊕ C ⊕ · · · ⊕X ⊕ Y ⊕ Z and A↔ B ↔ C ↔ · · · ↔ X ↔ Y ↔ Z

(a) What can you say about the case with four boolean variables?

A⊕B ⊕ C ⊕D and A↔ B ↔ C ↔ D

When are these formulae true?
(A ⊕ B ⊕ C) ⊕D is true iff d = 0 and abc has odd parity (in which case
abcd has odd parity), or d = 1 and abc has even parity (in which case abcd
has odd parity).
(A ↔ B ↔ C) ↔ D is true iff d = 1 and abc has odd parity (in which
case abcd has even parity), or d = 0 and abc has even parity (in which case
abcd has even parity).
Can you express your answer in terms of the parity of the string abcd?
So A⊕B ⊕ C ⊕D is true iff abcd has odd parity

A↔ B ↔ C ↔ D is true iff abcd has even parity.

(b) What about the case with two boolean variables?

A⊕B and A↔ B

When are these formulae true?
A⊕B is true iff ab has odd parity;
A↔ B is true iff ab has even parity.

(c) What can you say about the case with five boolean variables?

A⊕B ⊕ C ⊕D ⊕ E and A↔ B ↔ C ↔ D ↔ E

When are these formulae true?
For ⊕ this is just as before A ⊕ B ⊕ C ⊕D ⊕ E is true iff abcde has odd
parity.

1We say binary number has odd/even parity if it has an odd/even number of 1s.

10



(A ↔ B ↔ C ↔ D) ↔ E is true iff abcd has even parity and e = 1 (in
which case abcde has odd parity)
or abcd has odd parity and e = 0 (in which case abcde has odd parity)
Can you express your answer in terms of the parity of the string abcde?
Each is true iff abcde has odd parity.

(d) The general case is to consider expressions with n variables

A0 ⊕ A1 ⊕ A2 ⊕ · · · ⊕ An−3 ⊕ An−2 ⊕ An−1

and

A0 ↔ A1 ↔ A2 ↔ · · · ↔ An−3 ↔ An−2 ↔ An−1

Can you say when these formulae are true (the answer will depend on n)?

When n is odd, the two expressions are equivalent; each expression is true
iff the corresponding binary number has odd parity.
When n is even, the expression with ⊕ is true iff the corresponding binary
number has odd parity, while the expression with ↔ is true iff the binary
number has even parity.

(e) Does your general answer work when n = 1?
Yes

(f) How should we define the formulae for the case where n = 0?
If we define

⊕(A0, A1, A2, . . . , An−2, An−1) ≡ A0 ⊕ A1 ⊕ A2 ⊕ · · · ⊕ An−2 ⊕ An−1

↔ (A0, A1, A2, . . . , An−2, An−1) ≡ A0 ↔ A1 ↔ A2 ↔ · · · ↔ An−2 ↔ An−1

Then the required definitions are

⊕() = ⊥ ↔ () = >

since

⊥⊕ A = A > ↔ A = A

Question (2f) is analogous to the question of how we define the factorial of
0. One reason to define !0 = 1, is so that the equation !(n+1) = (n+1)!n
holds when n = 0. Your general rule should be derived from equations that
relate the case for formulae with n + 1 variables to the case for formulae
with n variables. Once you have this relation, you can work backwards to
define the appropriate formulae for the case n = 0.

11



3. Since ↔ and ⊕ are commutative and associative, the boolean functions corre-
sponding to the expressions studied in question (2) are permutation invari-
ant.

This means, for example, that the function f defined by

f(a, b, c, d, e) = a⊕ b⊕ c⊕ d⊕ e

returns the same value if we permute its arguments

a⊕ b⊕ c⊕ d⊕ e = b⊕ a⊕ c⊕ d⊕ e = b⊕ c⊕ a⊕ e⊕ d . . .

f(a, b, c, d, e) = f(b, a, c, d, e) = f(b, c, a, e, d) . . . and so on

(a) Which of the three-digit binary numbers can be obtained by permuting
the digits of 101?

i. 000

ii. 001

iii. 010

iv. 011•
v. 100

vi. 101•

vii. 110•
viii. 111

Those with one 0 and two 1s.
Note that the identity function is a permutation!

(b) How many binary numbers can be obtained by permuting the digits of
10101? 10 = 5× 4/2 = 5× 4× 3/6 – choose which are 0s or which are 1s.

(c) What property do two binary numbers abcde and vwxyz have in common
if they are are related by a permutation?
They contain the same number of 1s (equivalently, the same number of
0s).

(d) How many boolean functions of two boolean variables are there? How
many of these are permutation invariant?
There are 16 = 22

2 boolean functions of two variables. The permutation
invariant ones must must return true or false depending only on the number
of 1s (zero, one or two) in the 2-digit argument, so there are 8 = 23

permutation invariant functions.

(e) How many boolean functions of two n boolean variables are there? How
many of these are permutation invariant?
There are 22n boolean functions of n variables. The permutation invariant
ones must return true or false depending only on the number of 1s (any
number from 0 to n), so there are 2n+1 permutation invariant functions.

12



Summary of logical connectives

Symbol Meaning Example Alternative symbols
¬ not ¬A ∼ A
∧ and A ∧B A&B
∨ or A ∨B
→ implies A→ B
↔ iff A↔ B
⊕ xor A⊕B

This tutorial exercise sheet was written by Dave Cochran and Michael Fourman, and
includes material from an earlier version by Mark McConville, revised by Paolo Be-
sana, Thomas French, Areti Manataki, and Michael Fourman. Send comments to
michael.fourman@ed.ac.uk

13


