
Informatics 1 - Computation & Logic:
Tutorial 7

Propositional Logic:
Resolution and Inference

Week 9: 14-18 November 2016

Please attempt the entire worksheet in advance of the tutorial, and bring
with you all work, including (if a computer is involved) printouts of code
and test results. Tutorials cannot function properly unless you do the
work in advance.

You may work with others, but you must understand the work; you can’t
phone a friend during the exam.

Assessment is formative, meaning that marks from coursework do not
contribute to the final mark. But coursework is not optional. If you do
not do the coursework you are unlikely to pass the exams.

Attendance at tutorials is obligatory; please let your tutor know if you
cannot attend.

This tutorial comes in two parts. Part A is additional material on resolution—this
may be useful if you need to develop your understanding of this topic. Part B concerns
the new topic, inference.

If you have already mastered resolution you can skip straight to Part B.

Part A
In this section we revisit the use of resolution to determine the validity of an en-
tailment, and consider an alternative treatment in which the entailment relation is
generated by inference rules. For much of the tutorial we use two sets of constraints,

1



A and B, as running examples:

A B
(i) (C ∨ ¬D)→ (A ∨B)

(ii) (A ∨ ¬B)→ (D → C)

(iii) (A ∨B)→ (C ∨D)

(iv) D → (B → A)

(v) B → (C → D)

(vi) C → (A→ B)

(i) (C ∨ ¬D)→ (A ∨B)

(ii) (A ∨ ¬B)→ (D → C)

(iii) (A ∨B)→ (C ∨D)

(iv) (C ∨D)→ (A ∨ ¬B)

(v) A→ ¬C

Satisfaction

1. For each set of constraints use the Karnaugh map provided to show which states
are excluded by each constraint.

For example, the constraint A(i) is (C ∨ ¬D) → (A ∨ B); the states excluded
are those that make C ∨¬D true and make A∨B false. A state makes C ∨¬D
true iff it is a row where CD = 00, 11, or 10; it makes A ∨B false if it is in the
column where AB = 00. So there are three states excluded by this constraint,
as shown on the Karnaugh map.
The states/valuations excluded by an implication X → Y are those that make
X true and Y false. Some of our constraints exclude three states, some exclude
two, and one excludes four.

A B
AB

00 01 11 10

CD

00 (i) (iii) (iii) (iii)

01 (ii) (iv) (ii) (ii)

11 (i) (iv) (vi)

10 (i) (v) (v) (vi)

AB
00 01 11 10

CD

00 (i) (iii) (iii) (iii)

01 (ii) (iv) (ii) (ii)

11 (i) (iv) (v) (v)

10 (i) (iv) (v) (v)

Can you see from your maps whether each set of constraints is satisfiable?
A is, B is not.
Observe that a simple counting argument suffices to show that A is satifiable.

In tutorial 4, we introduced conjunctive normal form (CNF), and showed that,

any collection of constraints expressed in propositional logic is equivalent
to a conjunction of clauses, where each clause is a disjunction of literals.

2



CNF

2. (a) For each set of constraints, use Boolean algebra to derive an equivalent
conjunctive normal form.

A

i. a {¬C,A,B}
b {D,A,B}

ii. a {¬A,¬D,C}
b {B,¬D,C}

iii. a {¬A,C,D}
b {¬B,C,D}

iv. {¬B,A,¬D}

v. {¬C,D,¬B}

vi. {¬A,B,¬C}

B

i. a {¬C,A,B}
b {D,A,B}

ii. a {¬A,¬D,C}
b {B,¬D,C}

iii. a {¬A,C,D}
b {¬B,C,D}

iv. a {¬C,A,¬B}
b {¬D,A,¬B}

v. {¬A,¬C}

(b) For each CNF show on the Karnaugh map which states excluded by each
clause.

A clause with 1 literal excludes 1/2 of the 16 possible states; a clause with two
literals excludes 1/4 of them; in general, a clause with n literals excludes 1/2n

of the possible states. On the Karnaugh map each clause excludes a rectangle
(possibly wrapped around the back of the torus).

A B
AB

00 01 11 10

CD

00 (iii.a) (iii.a)
(i.b) (iii.b) (iii.b)

01 (iv) (ii.a) (ii.a)
(ii.b) (ii.b)

11 (i.a) (iv) (vi)

10 (i.a) (v) (v) (vi)
(i.b)

AB
00 01 11 10

CD

00 (i.b) (iii.b) (iii.a) (iii.a)

(iii.b)
01 (ii.a) (ii.a)

(ii.b) (iv.b) (ii.b)
11 (i.a) (iv.b) (v) (v)

(iv.a)
10 (i.a) (iv.a) (v) (v)

(i.b)

3



Resolution

In tutorial 5, we introduced resolution as a method for determining whether a given
set of constraints, expressed in CNF, is consistent. We introduced the resolution rule
and showed that it is sound—if any valuation satisfies both premises of the rule,
then it satisfies the conclusion. In particular, if from some initial set of constraints
(clauses), we can use resolution to derive the empty clause (which is the impossible
constraint, not satisfied by any valuation), then every valuation is must be refuted
by at least one of the initial constraints.

So, if we can derive the empty clause then the inital set of constraints is
inconsistent: there is no valuation that satisfies all the constraints.

3. Use resolution to show that one of the two sets of clauses A,B is inconsistent.

We know from the previous question that B is satisfiable.
We resolve the clauses in B. Tautologous (and hence trivial) clauses are shown in

bold face.
A B C D

B{¬C,B,¬D,C} {¬D,C,D} {¬D} {}
B{¬C,B,C,D} {¬D,C,¬C} {¬D,D}

B {¬C,B} C {¬D,C} {D}
B{D,B,¬D,C} {¬C,C,D} + 3 duplicates

B {D,B,C} C {¬C}
B {D,B,¬C} C {¬C,¬D}

B{¬C,¬B,¬D,C} C {D,C}
B{¬C,¬B,C,D} {D,C,¬D,¬C}

B {¬C,¬B} C {D,¬C}
B {¬D,¬B,C} {D,¬C,¬D}

B{¬D,¬B,C,D} + 6 duplicates
B {¬D,¬B,¬C} (omitted)

The empty clause is found, the clauses are inconsistent.

To show that resolution is complete we must show that,

If the inital set of constraints is inconsistent,
then we can derive the empty clause.

It suffices to show that if we cannot derive the empty clause then there is a valuation
that satisfies the initial set of clauses—because the existence of such a valuation
shows that the set of clauses is consistent.

We say that a literal whose negation does not occur in any clause is pure. We
can easily satisfy all clauses that contain a pure literal: if it is of the form ¬A we let
V(A) = ⊥; if it is of the form A we let V(A) = >.

4



In fact, if any valuation, W, satisfies all of our constraints, then so does the
valuation we obtain from W by making all pure literals true. So if we are only
concerned with satisfiability, we can start by making all pure literals true, eliminate
all clauses that containg any of them, and focus on finding a valuation of the remaining
variables that satisfies the remaining clauses.

4. For each set of clauses, A,B, say how many resolution pairs there are for each
variable.

A B C D

A 9 12 12 12

B 12 9 12 9

How many pairs would you find
for a pure literal?

0

The Davis-Putnam resolution procedure is based on a step that simplifies such a
set of clauses, X , by using resolution to eliminate one variable (for example, A), by
resolving all available pairs for resolution using that variable. We take away all the
clauses that mention A and add the results of resolving each A,¬A pair—except for
any trivial results, clauses that include both some literal and its negation are trivial
constraints. This produces a set of clauses, X\A that don’t mention A.

5. For each example, A,B, what clauses are in the set after resolution on A?

A\A =
{{B,¬D,C} ,
{¬B,C,D} ,
{¬C,D,¬B} ,
{¬B,¬D,C} ,
{D,B,C} ,
{¬C,B} ,
{D,B,¬C}}

B\A =
{{B,¬D,C} ,
{¬B,C,D} ,
{¬C,B} ,
{D,B,C} ,
{D,B,¬C} ,
{¬C,¬D} ,
{¬D,¬B,C} ,
{¬D,¬B,¬C}}

This set, X\A, has the property that any valuation of the remaining variables that
satifies this set of constraints, X\A, can be extended, by providing a suitable value for
A, to a valuation that satisfies all the constraints in X .

If a valuation, V, satisfies X\A then either V makes all the clauses in X that
include the literal ¬A true, or V makes all the clauses in X that include the literal
¬A true (or both). In either case, deleting all clauses satisfied by V, if A appears in
the remaining clauses, it will be as a pure literal, either A or ¬A. We can extend V
with the value for A required makes this literal true.

This is the crucial property that allows us to construct a satisfying valuation if
resolution fails to produce the empty clause. Unless we can produce the empty clause,
resolution will end with every literal pure.

5



6. For each example, X = A,B, explain how, if you were given a valuation for the
remaining variables, B,C,D, satisfying every clause in X\A, you could choose a
valuation for A that would satisfy every clause in X .
A
From A, delete all clauses satisfied by
the valuation. Assuming that the val-
uation satisfies A\A, this will either
leave A or ¬A as pure literal, or all
clauses containing A will be deleted.
In the former case, you may add A =
> or A = ⊥ respectively to the valu-
ation; in the latter, you may safely do
either.

B
The same, but here we do not expect
to find a satisfying valuation.

7. Suppose resolution fails to produce the empty clause,

(a) How can you construct a counterexample to the remaining constraints?

First, make any pure literals in one’s final resolution pool (in the examples
above, (((X\A)\B)\C)\D) true.
From the preceding resolution pool, remove any clauses already satisfied by
one’s partial valuation. Make any resulting pure literals true. If, at any
point, the whole pool is removed, any atoms previously in the pool but not
in the valuation may be safely given either valuation.
Repeat until all atoms are given a valuation

(b) It is possible that no clauses non-trivial remain. When does this happen?
In this case, how do you construct a satisfying valuation?

This happens when you have more than one pair of complementary literals
in the same clause. If resolving on some literal X terminates resolution by
producing only trivial clauses, X and any unresolved atoms may safely be
given any valuation.

6



8. For each example, X = A,B complete the procedure by resolving successively
on all available pairs for each remaining variable B,C,D in turn.
In each case, stop if at any stage you produce the empty clause.

(A\A)\B =

{{D,C} ,
{D,¬C} ,
{¬D,C}}

(B\A)\B =

{{¬D,C} ,
{¬C} ,
{¬C,¬D} ,
{D,C} ,
{D,¬C}}

((A\A)\B)\C =

{{D}}

((B\A)\B)\C =
{{¬D} ,
{D}}

(((A\A)\B)\C)\D =

{{D}}

(((B\A)\B)\C)\D =
{{}}

Is there a satisfying valuation for
(((A\A)\B)\C)\D?
Yes.

If so, give a satisfying valua-
tion for A.
A = B = C = D = >

Is there a satisfying valuation for
(((B\A)\B)\C)\D?
No.

If so, give a satisfying valua-
tion for B.

7



Part B

Rules

In informatics we often use such rules to define sets of things inductively. This means
that we start with some basic things and give rules that say how more complex things
are produced from these.

A rule of the form:
β1 · · · βn

α

allows us to derive the conclusion α from the assumptions β1, . . . , βn.
As a first example, consider defining the grammar of a language. A grammar tells

us how we can construct sentences from different kinds of words.
We give the following rules:

ideas : N linguists : N great : A green : A hate : V generate : V

X : V
X : VP (V ) X : V Y : NP

XY : VP (V P )

X : N
X : NP (N) X : A Y : NP

XY : NP (NP )

X : NP Y : VP
XY : S (S)

Here, “ideas:N” means that ‘ideas’ is a noun. Our rules allow us to infer that
particular phrases belong to various grammatical categories: noun (N), adjective
(A), verb (V), noun-phrase (NP), verb-phrase (VP), and sentence (S). The variables
X, Y range over phrases, where phrases are non-empty lists of words. The rules are
labelled, (V), (VP), etc., for ease of reference.

For example, we can show that, “great linguists generate green ideas” is a sentence.
In symbols,

great linguists generate green ideas : S

We do this by constructing a tree:

great : A
linguists : N
linguists : NP (N)

great linguists : NP (NP )
generate : V (V P )

green : A
ideas : N
ideas : NP (N)

green ideas : NP (NP )

generate green ideas : VP
great linguists generate green ideas : S (S)

9. (a) Which of the following are sentences for this grammar?
i. green linguists hate great ideas Yes

green : A
linguists : N
linguists : NP (N)

green linguists : NP (NP )
hate : V

great : A
ideas : N
ideas : NP (N)

great ideas : NP (NP )

hate great ideas : VP (V P )

green linguists hate great ideas : S (S)

8



ii. green green green linguists hate Yes

green : A
green : A

green : A
linguists : N
linguists : NP (N)

green linguists : NP (NP )

green green linguists : NP (NP )

green green green linguists : NP (NP ) hate : V
hate : VP (V )

green green green linguists hate : S (S)

iii. generate ideas No
iv. green ideas generate hate No

(b) How might you extend the grammar to include the sentence, “colourless
green ideas sleep furiously”?

colourless : A furiously : AdV
X : VP Y : AdV

XY : VP (V P )

(c) We say that a grammar is sound if it only generates grammatical sen-
tences, and that it is complete if every grammatical sentence can be
generated by the rules.
i. Is it is possible to give a sound grammar for a natural language?

Yes, trivially; the empty grammar produces no ungrammatical sentences.
ii. Is it possible to give a complete grammar for a natural language?

Yes, trivially; one could produce grammar that generated all possible se-
quences of words for the given the vocabulary of the langauge. Of course,
the real problem is, is it possible to produce a grammar that is both sound
and complete for a natural language. This is very much a disputed issue;
in the 1950’s, Chomsky gave the production of complete, sound grammars
of natural languages as a mission statement for the programme of Genera-
tive linguistics which has dominated the study of language from then until
now, and so far, no-one has been able to do it convincingly.
iii. Is every grammatical sentence true?

No, nor even meaningful - witness "Colourless green ideas sleep furiously."
iv. Is it possible to write a grammar that will only generate true sentences?

Not if the truth conditions of some of its sentences refer to states of affairs
in the world.

10. Now consider the language whose sentences are expressions of propositional
logic.

9



(a) Is it is possible to give a sound and complete grammar for propositional
logic?

Yes, we start from atomic propositions and use simple rules to describe how the
well-formed formulae (wffs), W, are built from simpler ones using the connec-
tives.

A : W (where A is a propositional letter) X : W
¬X : W (¬)

X : W Y : W
X ∨ Y : W (∨) X : W Y : W

X ∧ Y : W (∧) X : W Y : W
X → Y : W (→)

Note that there is a subtle difference in the nature of the task here; in con-
structing a grammar for a natural language, the question of whether a sentence
is grammatical is an empirical one, requiring verification using native speaker
intuitions or large stores of language data. However, a grammar of propositional
logic provides a definition of what counts as a Well-Formed Formula.

(b) Is every grammatical sentence of propositional logic true?

No.

(c) Is it possible to write a grammar that will only generate tautologies?

The answer is actually, Yes. However it is simpler to give rules that generate
valid entailments, or valid sequents, which we will turn to shortly.

We could also write a grammar for regular expressions.

11. Give a grammar for the language in the alphabet {[, ]} that consists only
of properly matched sets of parentheses such as [[][][[][][]]] (but not, for
example, [[]]][][[[][[]]].

[] : M
x : M y : M

xy : M
x : M

[x] : M

We know that this language is not regular. So we can write a grammar for some
language that is not regular. A natural question is whether we can write a grammar
for any regular language. We will not answer it here.

10



Entailment

We introduce some simple rules for generating valid entailments.

Γ, X ` X (I)
Γ ` X ∆, X ` Y

Γ,∆ ` Y Cut

Γ ` X Γ ` Y
Γ ` X ∧ Y (∧)

Γ, X ` Z Γ, Y ` Z
Γ, X ∨ Y ` Z (∨)

Γ, X ` Y
Γ ` X → Y

(→)

Here, Γ and ∆ are variables that range over sets of expressions of propositional logic,
and X, Y and Z are variables that range over expressions themselves. We read the
‘turnstile’ ` symbol as entails.

Recall that an entailment is valid iff whenever a valuation V makes all of its
premises (the formulae to the left of the turnstile) true, it also makes the conclusion,
the formula to the right of the turnstile, true. A counterexample to an entailment
is a valuation that make all of the premises, to the left of the turnstile true, while
making the conclusion, to the right of the turnstile false. If there is a counterexample
the entailment is invalid. If there is no counterexample then it is valid.

A rule is sound iff whenever all of its assumptions are valid then so is its conclu-
sion.

12. Show that these rules are sound, by showing that if a valuation is a counterex-
ample to the conclusion. then it is a counterexample to at least one of the
conclusions. Why is this sufficient to show the rule is sound? A counterexam-
ple to an entailment makes all of its premises true and its the conclusion false.
So an entailment is valid iff there is no counterexample.

� (∧): A valuation is a counterexample to the bottom line if it makes every-
thing in Γ true and makes (X ∧ Y ) false. But, since this valuation makes
(X ∧ Y ) false, it makes X false or it makes Y false. Thus it is a coun-
terexample to one of the entaiments on the top line. Furthermore, any
counterexample to either of these makes (X ∧ Y ) false, and so provides a
counterexample to the bottom line.

� (∨): A valuation is a counterexample to the bottom line if it makes every-
thing in Γ true and makes (X ∨ Y ) true. But, since this valuation makes
(X ∨ Y ) true, it makes X true or it makes Y true. Thus it is a coun-
terexample to one of the entaiments on the top line. Furthermore, any
counterexample to either of these makes (X ∨ Y ) true, and so provides a
counterexample to the bottom line.

� (→): Since Γ is in the premises of the entailments above and below the
lines, any counterexample, V, to the entailment above or below the line
must make everything in Γ true. V is a counterexample to the entailment
above the line iff V(X) = > and V(Y ) = ⊥ iff V(X → Y ) = ⊥ iff V is a
counterexample to the entailment below the line.

11



� (Cut): Since this rule does not have a double line, we only need to show
that a counterexample to the conclusion is a counterexample to one of the
assumptions. A counterexample to Γ,∆ ` Y makes everything in Γ,∆
true and Y false. if it makes X false it is a counteexample to the first
assumption; if it makes X true it is a counterexample to the second.

The immediate rule (I) has no assumptions. The double line used for the other
three structural rules means that the rule can be used in either direction. The entail-
ment below the double line is valid iff all of the entailments above the line are valid.
Read from top to bottom, they are called introduction rules (+), since they introduce
a new connective into the argument. Read from bottom to top, they are elimination
rules (−) since a connective is eliminated.

These rules are designed to allow us to produce valid entailments. We say that a
valuation validates A ` X if it makes at least one of the assumptions A ∈ A false or
it makes X true. The entailment is valid iffit is validated by every valuation. So it
is valid iff any valuation that makes all the premisses in A true also makes X true.1

Using these rules we can prove validity. For example, the following proof tree:

A→ B,C ` A→ B
(I)

A→ B,C,A ` B (→−)
A→ B,C,A ` C (I)

A→ B,C,A ` B ∧ C (∧+)

A→ B,C ` A→ (B ∧ C)
(→+)

shows that A→ B,C ` A→ (B ∧ C) is valid.
We start with the goal of proving the bottom line — showing that it is valid.

The fact that all of the rules are sound, and we can derive the goal starting from no
assumptions shows that the goal is valid.

To find such a proof we start with the bottom line as our goal. Matching this
goal with the conclusion of a rule allows us to replace the original goal with the
assumptions of the rule. If we can derive these assumptions, then the rule we have
just introduced allows us to derive the original goal.

This system is complete for the fragment of propositional logic without negation,
but finding proofs is often tricky. When we mix introduction and elimination rules,
and search for a proof, it is sometimes hard to tell whether we are making progress,
or just going round in circles.

Sequent Calculus

As we saw in the case of DFA and NFA, it is sometimes helpful to place our objects
of study in a wider context. Although every NFA is equivalent to a DFA, in many
ways NFA are easier to construct, and to reason about.

Here we introduce an idea due to Gentzen. Instead of reasoning about entail-
ments, with any (finite) number of premises and a single conclusion, we reason about
sequents, which allow finitely many assumptions and finitely many conclusions.

1Note that the rule (I) is certainly sound, since X occurs on both sides of the turnstile.

12



Within this context, we can give an elegant set of rules, due to Gentzen, that
eliminate the searching from propositional proof.

We now allow sequents that include multiple premisses and multiple conclusions:
Γ,∆ vary over finite sets of expressions; A,B vary over expressions. The intended
interpretation is that if all of the premises are true then at least one of the conclusions
is true. Every entailment is a sequent, with a single conclusion.

A counterexample must make all of the premises true, and all of the conclusions
false— for entailments, this is just as before. This seemingly minor change allowed
Gentzen to introduce this beautifully symmetric set of rules:

Γ, A ` ∆, A
(I)

Γ, A,B ` ∆

Γ, A ∧B ` ∆
(∧L)

Γ ` A,B,∆
Γ ` A ∨B,∆ (∨R)

Γ, A ` ∆ Γ, B ` ∆

Γ, A ∨B ` ∆
(∨L)

Γ ` A,∆ Γ ` B,∆
Γ ` A ∧B,∆ (∧R)

Γ ` A,∆ Γ, B ` ∆

Γ, A→ B ` ∆
(→ L)

Γ, A ` B,∆
Γ ` A→ B,∆

(→ R)

Γ ` A,∆
Γ,¬A ` ∆

(¬L)
Γ, A ` ∆

Γ ` ¬A,∆ (¬R)

These are all introduction rules. This means that a goal-directed proof will always
produce simpler and simpler sequents (but maybe many many simpler sequents) as
our trees grow upwards.

These rules have two crucial properties:

� soundness For each rule if a valuation is a counterexample to the conclusion
then it is a counterexample to at least one of the assumptions. (From this, it
follows that each rule is sound — if the assumptions are valid then so is the
conclusion.)

� completeness For each of the rules, if any valuation is a counterexample to
at least one of the assumptions, then it is a counterexample to the conclusion.
(From this it follows that this system of rules is complete, since any proof at-
tempt either succeeds with every leaf of the tree being reached by the immediate
rule, with no assumptions, or fails with sequents containing only atomic propo-
sitions, such that the set of sequents to the left of the turnstile is disjoint from
the set to the right. A valuation making everything to the left true and every-
thing to the right false, provides a counterexample to such a sequent.)
This is a straight-forward exercise in truth-table argumentation. A counterex-
ample makes everything on the left true, and everything on the right false. So,
for example, a counterexample to either of the assumptions of (→ L) makes
everything in Γ true, and everything in ∆ false. A counter-example to the first

13



premise makes A false, while a counter-example to the second premise makes
B true; in either case, A → B is true and we have a counter-example to the
conclusion.

13. The following rules are suggested for xor (⊕).
Do they have the soundeness and completeness properties?

Γ, A ` B,∆ Γ, B ` A,∆
Γ, A⊕B ` ∆

(⊕L)
Γ, A,B ` ∆ Γ ` A,B,∆

Γ ` A⊕B,∆ (⊕R)

Can you suggest corresponding rules for ↔, and check their properties?

� (⊕L), soundness: Observe that a counterexample to the conclusion must
falsify ∆ while making Γ and A⊕B true, meaning exactly one of A and B
are true. A valuation that makes Γ true and ∆ false will be a counterex-
ample to the left premise, Γ, A ` B,∆, if A is true and B false, and will
be a counterexample to Γ, B ` A,∆ if the reverse is the case; and one or
other of these conditions is guaranteed by A⊕B being true.

� (⊕L), completeness: conversely, a valuation invalidating Γ, A ` B,∆ will
make Γ and A true, and ∆ and B false, which will make A ⊕ B true,
invalidating Γ, A ` B,∆. Similar reasoning will get a similar result for the
other branch.

� (⊕R), soundness: A counterexample to the conclusion must make Γ true,
∆ false, and A and B both true or both false. If they are both true, this
makes all the premises of Γ, A,B ` ∆ true, while the conclusion is false,
making it invalid. On the other hand, if they are both false, this makes all
the conclusions of Γ ` A,B,∆ false, while the premise is true, making it
invalid.

� (⊕R), completeness: Invalidating either formula above the line will make Γ
true and ∆ false, so that if A⊕B is false, Γ ` A⊕B,∆ will be invalidated.
A valuation that invalidates Γ, A,B ` ∆ will make A and B both true,
and one that invalidates Γ ` A,B,∆ will make them both false—either of
which falsifies A⊕B.

Regarding ↔, consider the following:

Γ, A,B ` ∆ Γ ` A,B,∆
Γ, A↔ B ` ∆

(↔ L)
Γ, A ` B,∆ Γ, B ` A,∆

Γ ` A↔ B,∆
(↔ R)

Notice that the upper parts of (↔ L) and (⊕R) are the same, as are the upper
parts of (↔ R) and (⊕L). This is to be expected, as A↔ B and ¬(A⊕B) are
equivalent; thus, any valuation that invalidates Γ, A ↔ B ` ∆ also invalidates
Γ ` A⊕B,∆, and any valuation that invalidates Γ ` A↔ B,∆ also invalidates
Γ, A⊕ B ` ∆; and as such the proofs of soundness and completeness for (⊕L)
and (⊕R) can easily be adapted to show soundness and completeness for (↔ L)
and(↔ R).

14



14. For each of the entailments listed below, construct a proof tree, by applying the
Gentzen rules until the leaves of your tree contain no connectives. Then say
whether the entailment is valid. How can a proof attempt fail? How can you
can construct a falsifying valuation from a failed proof attempt?

(a) B ∧ C ` (A→ B) ∧ (A→ C)

A,B,C ` B (I)

B,C ` A→ B
(→ R)

A,B,C ` C (I)

B,C ` A→ C
(→ R)

B,C ` (A→ B) ∧ (A→ C)
(∧R)

B ∧ C ` (A→ B) ∧ (A→ C)
(∧L)

(b) A ∧ (B ∧ C) ` (A ∧ B) ∧ C

A,B,C ` A (I)
A,B,C ` B (I)

A,B,C ` A ∧B (∧R)
A,B,C ` C (I)

A,B,C ` (A ∧B) ∧ C (∧R)

A,B ∧ C ` (A ∧B) ∧ C (∧L)

A ∧ (B ∧ C) ` (A ∧B) ∧ C (∧L)

(c) A→ B,A ∧ C ` B ∧ C

A,C ` A,B ∧ C (I)
A,B,C ` B (I)

A,B,C ` C (I)

A,B,C ` B ∧ C (∧R)

A→ B,A,C ` B ∧ C (→ L)

A→ B,A ∧ C ` B ∧ C (∧L)

(d) A ∨ B→ C, C→ A ` C→ B

C ` B,A ∨B,C
(I)

A,C ` B,A,B
(I)

A,C ` B,A ∨B
(∨R)

C → A,C ` B,A ∨B
(→ L)

C ` B,C
(I)

A,C ` B, failure!

C → A,C ` B
(→ L)

A ∨B → C,C → A,C ` B
(→ L)

A ∨B → C,C → A ` C → B
(→ R)

(A ∨ B) → C, C → A ` C → B
T T F T T T T T T F F

The valuation A = true, B = false, C = true invalidates this inference.

(e) A→ C ` A→ (B ∨ C)

A ` A,B,C (I)
C,A ` B,C (I)

A→ C,A ` B,C (→ L)

A→ C,A ` B ∨ C (∨R)

A→ C ` A→ (B ∨ C)
(→ R)

Note that for these rules there are no cut formulae to find — and that the choice
of rules to apply is limited by the context.

15



15. Estimate the height and breadth of the proof trees you would obtain if you
applied Gentzen’s rules to the sets of constraints A,B, introduced at the start
of this tutorial.
This requires some thought, as the rules we have here are designed to demon-
strate the validity of entailments, whereas in Part 1, we were concerned with
the satisfiability of constraints. How then can we express the claims that A and
B are satisfiable as entailments? The key is to understand that

Γ ` ` ∆

—are both perfectly meaningful entailments; the former is equivalent to the
claim that the conjunction of Γ is contradictory, and the latter to the claim
that the disjunction of ∆ is tautologous. Thus we can, for instance, make an
entailment A′ in which the premises are the constraints of A, and there are no
conclusions. If the rules of Sequent Calculus cannot find prove it to be valid,
the constraints are not contradictory, and so are satisfiable.

We can give an upper bound for the height by counting connectives—we need
one step to remove each connective. For A there are 16 (15 binary and one
negation), for B we have the same count (but only 13 binary and 3 negations).
Each binary connective may split the proof tree (depending on which of its rules
applies), so worst case estimates for the breadth are 215 and 213.

These estimates strongly suggest that Gentzen’s procedure is not as efficient as
resolution.

Can we give better estimates of the breadth?

We might hope that around half of the time there would be no splitting, and
reduce these estimates to 27.5 ≈ 90 and 26.5 ≈ 181. But we will see that this
hope is over-optimistic.

A′ has six premises, each with → as the main connective. Dismissing the first
of these will give a height of 2 and a breadth of 2. Dismissing each subsequent
one will add 1 to the height and double the breadth, leaving a height of 7 and
a breadth of 26 = 64.

This should be enough to convince us that Gentzen’s procedure is not as effi-
cient as resolution, which is the main lesson you should learn from this example.

Dave Cochrane has taken the analysis further (such an analysis goes beyond the re-
quirements of this course, but may be of interest to a few intrepid explorers). Abandon
hope all ye who enter here!

Once we have eliminated the 6 primary connectives, each branch will contain 0 ≤ x ≤ 6

of the antecedents in their premises, and 6−x of the consequents in their conclusions.
The highest branches will be those which contain none of the antecedents of constraints
(iv)-(vi), as those are single atoms (whereas all other premises and conclusions on each
branch contain one two-place connective) and which contain the antecedents of both

16



(i) and (ii), as those contain a single negative literal each. Thus, each of these branches
will have to dismiss eight more connectives, giving a maximum total height of 15.

Of the initial 64 branches, the 64 × 3
8 = 24 that contain a single premise from an-

tecedents of (i)-(iii) will split into 2 more branches, as these are all disjuncts, and (∨L)
is a branching rule. The 64× 3

8 = 24 that have two will branch into 4, the 64× 1
8 = 24

with 3 into 8, and the 64 × 1
8 = 8 with none will not branch any further. Thus, the

breadth of the tree will be at most (24×2)+(24×4)+(8×8)+8 = 48+96+64+8 = 216.

B′ has five premises, also each with → as the main connective; thus, once these are
all dismissed the tree will have a height of 6 and a breadth of 32. At this point, each
branch will have exactly 8 two-place connectives to dismiss, and a maximum of three
negations, giving a maximnm total height of 17. (i)-(iv) have antecedents which, on
the branches where (→ L) makes them into premises, will branch; and there are no
other connectives that require dismissal with a branching rule. Thus, 32 × 1

16 = 2

will not branch, 32 × 4
16 = 8 will branch into 2, 32 × 6

16 = 12 will branch into 4,
32× 4

16 = 8 will branch into 8, and 32× 1
16 = 2 will branch into 16, giving a maximum

final breadth of 2+(8×2)+(12×4)+(8×8)+(2×16) = 2+16+48+64+32 = 162.

The actual height and breadth of each tree may turn out to be slightly less, if some
branches reach the Immediate rule before all connectives are dismissed.

16. If you produced rules for ↔ in your answer to Question 13 use these and the
rules for ⊕ given there, to show that

(A↔ B)↔ C ` (A⊕B)⊕ C

See subtree 1...
(A↔ B)↔ C,A⊕B,C ` (⊕L) See subtree 2...

(A↔ B)↔ C ` A⊕B,C (⊕R)

(A↔ B)↔ C ` (A⊕B)⊕ C (⊕R)

Subtree 1:

B,A,C ` B
(I)

A,C ` B,A
(I)

A↔ B,A,C ` B
(↔ L)

A,C ` A↔ B,B,C
(I)

(A↔ B)↔ C,A,C ` B
(↔ L)

A,B,C ` A
(I)

B,C ` A,B
(I)

A↔ B,B,C ` A
(↔ L)

B,C ` A↔ B,A,C
(I)

(A↔ B)↔ C,B,C ` A
(↔ L)

(A↔ B)↔ C,A⊕ B,C `
(⊕L)

Subtree 2:

A↔ B,C ` A,B,C
(I)

A ` A,B,C
(I)

B ` A,B,C
(I)

` A↔ B,A,B,C
(↔ R)

(A↔ B)↔ C ` A,B,C
(↔ L)

A,B,A↔ B,C ` C
(I)

A,B ` A,C
(I)

A,B ` B,C
(I)

A,B ` A↔, C
(↔ R)

A,B, (A↔ B)↔ C ` C
(↔ L)

(A↔ B)↔ C ` A⊕ B,C
(⊕R)

All branches terminate with the Immediate rule; the entailment is valid.

This tutorial exercise sheet was written by Paolo Besana, and extended by Thomas
French Areti Manataki, and Michael Fourman. Send comments to Michael.Fourman@ed.ac.uk

17


