
Informatics 1 - Computation & Logic:
Tutorial 6

Computation: Non-Deterministic FSMs and
Regular Expressions

Week 8: 7 - 11 November 2016

Please attempt the entire worksheet in advance of the tutorial,
and bring with you all work, including (if a computer is involved)
printouts of code and test results. Tutorials cannot function prop-
erly unless you do the work in advance.

You may work with others, but you must understand the work;
you can’t phone a friend during the exam.

Assessment is formative, meaning that marks from coursework do
not contribute to the final mark. But coursework is not optional.
If you do not do the coursework you are unlikely to pass the
exams.

Attendance at tutorials is obligatory; please let your tutor know
if you cannot attend.

1

You may find it useful to refer to the FSM Workbench question set which
accompanies this tutorial at homepages.inf.ed.ac.uk/s1020995/tutorial6.

1. Consider the finite state machine in the diagram below.

a,c

a

b

b

b

c

a,b
,c

a,b,c

a,c

S1

S2

S3

S4

S5

(a) For each input sequence in the table below, record whether it is
accepted by the FSM.

Input Is Accepted?
〈 〉 Y
b Y
aa Y
ba N

abaab N
acaca Y
aaab Y
bbbcb Y
cacba N

(b) Is the FSM deterministic? Justify your answer.
NO. As it has two initial states it can be in more than one state
for some input sequences.

2

http://homepages.inf.ed.ac.uk/s1020995/tutorial6
http://homepages.inf.ed.ac.uk/s1020995/tutorial6

2. This NFA over the alphabet {a} uses an ε transition.

a ε

a

S1 S2 S3

(a) Describe the language accepted by this machine in words.
All sequences of ‘a’ that are at least one character long

(b) Describe the language accepted by this machine using a regular
expression. aa∗

(c) Design a deterministic machine that accepts the same language as
this machine.

a

a

S1 S2

3. ε-transitions provide a simple way of combining FSMs. The machine
below has been composed from two machines A and B, which had initial
states A1 and B1.

ε

a

b

a

a

ε
b

b

a

a

a

b

S

A1 A2 A3

B1

B2

B3

B4

B

A

3

(a) Considering machines A and B separately, give a regular expres-
sion which describes the language they accept. A: ab∗aa∗
B: (bb|aa)∗(ba|ab)

(b) Considering the whole machine, give a regular expression which
describes the language the machine accepts.
(ab∗aa∗)|((bb|aa)∗(ba|ab))

(c) LA and LB are the sets of inputs accepted by machines A and B.
Give an expression relating LA and LB to L, where L is the set of
input accepted by the whole machine. L = LA ∪ LB

4. Consider the regular expression ab(a|b)∗

(a) Describe in words the language that the expression matches. In-
clude two examples of strings that are matched. The string ‘ab’
followed by zero or more ‘a’s and ‘b’s. Examples of accepted
strings include ‘ab’, ‘abaaa’, and ‘ababba’.

(b) Design a finite state machine that accepts that language.

(c) Building on your answer to (b), design a finite state machine that
accepts ab(a|b)∗bb∗(aa)∗.

Is perhaps the obvious answer, but it may be puzzling to observe
that a natural regex for this machine is ab(a|b)∗b(b|aa)∗. In fact,
ab(a|b)∗b(b|aa)∗ ≡ ab(a|b)∗bb∗(aa)∗ — why?
We can give a simpler FSM by observing that ab(a|b)∗bb∗(aa)∗ ≡
ab(a|b)∗b(aa)∗, which follow from the facts that bb∗ ≡ b∗b and
(a|b)∗b∗ ≡ (a|b)∗
Thus we can eliminate the b transition from S4 to S4 in the answer,
to give an equivalent machine.

4

5. Consider this NFA over the alphabet {a, b, c}.

c
c

c

ε

a

ε

b c

c

B1

A1 A2 A3

B2 B3

C1 C2

(a) Describe, both in words and with a regular expression, the lan-
guage accepted by this machine. Hint: think about the sequences
that end in A3 and B3. The machine accepts strings consisting of
an even number (>0) of ‘c’s followed ‘a’ or ‘b’ followed by at least
one ‘c’ followed by ‘a’.
(c(cc)∗ca)|(bcc∗a)

(b) Design a DFA that accepts the same language.

(c) Are there any NFAs that cannot be converted into an equivalent
DFA? No – all NFAs have an equivalent DFA.

5

6. Consider this DFA over the alphabet {0, 1, 2}. It should be familiar.

(a) Describe, in words, the language accepted by this machine. Hint:
Your description in words should refer to ternary numbers. This
machine accepts ternary representations of natural numbers divis-
ible by 4.

(b) Replace each transition labelled 0 by a transition labelled ε, be-
tween the same two states. The resulting automaton is not a DFA.
(Why not?)
Because a DFA has no ε transitions.

i. Construct an equivalent DFA.

ii. Describe, both in words and with a regular expression, the
language accepted by this machine.

6

Any string on the alphabet {1, 2} which has an even number
of 1’s, and such that if that number is zero (i.e. if there are
no 1’s) it has an even number of 2’s : (2∗12∗12∗)∗(22)∗

(c) Next, replace each transition (of the original machine) labelled 1
by a transition labelled ε, between the same two states.

i. Again, construct an equivalent DFA, and, ii, describe the lan-
guage it accepts.

Any string on the alphabet {0, 2} : (2 | 0)∗

(d) Repeat the exercise replacing each transition (of the original ma-
chine) labelled 2 by a transition labelled ε, between the same two
states.

i. Construct an equivalent DFA, and, ii, describe the language
it accepts

Any string on the alphabet {0, 1} with an even number of 1’s
: (0∗10∗10∗)∗0∗

7

(e) BONUS QUESTION: Give a regular expression that describes the
language accepted by the original machine. Test your answer using
the grep utility.
This bonus question goes somewhat beyond the call of duty. Feel
free not to attempt it. That said, by the end of week 7 you should
have all the tools required to complete it. If you do choose to try
it, I suggest you use cut and paste in some suitable editor to make,
and keep track of the algebraic substitutions that are required.

By repeated application of Arden’s Lemma, substitution and simplification,
from the equations

L0 = L00 | L11 | L22 | ε
L1 = L01 | L12 | L30

L2 = L02 | L20 | L31

L3 = L10 | L21 | L32

For example, applying Arden’s Lemms to the final equation for L3 and then
substituting the result for L3 in the equations for L1 and L2, we obtain,

L0 = L00 | L11 | L22 | ε
L1 = L01 | L12 | (L10 | L21)2

∗0

L2 = L02 | L20 | (L10 | L21)2
∗1

L3 = (L10 | L21)2
∗

We can apply distributivity (x | y)z = (xz | yz), for regular expressions, to-
gether with the commutativity and associativity of |, to regroup the equation
for L2 to a form suitable for Arden.

L2 = L02 | L20 | (L10 | L21)2
∗1

= L02 | L20 | L102
∗1 | L212

∗1 (distrib)
= L02 | L102

∗1 | L20 | L212
∗1 (comm)

= L02 | L102
∗1 | L2(0 | 12∗1) (distrib)

L2 = (L02 | L102
∗1)(0 | 12∗1)∗ (Arden)

Continuing in similar vein, to eliminate L2 and L1, we eventually apply Ar-
den to an equation for L0, to derive
L0 = (0|2(0|12∗1)∗2|(1|2(0|12∗1)∗12∗0)(2|02∗0|02∗1(0|12∗1)∗12∗0)∗(1|02∗1(0|12∗1)∗2))∗

8

