Informatics 1 - Computation & Logic:
Tutorial 4

Satisfiability and Resolution

Week 6: 24-28 October 2016

Please attempt the entire worksheet in advance of the tutorial, and bring
with you all work, including (if a computer is involved) printouts of code
and test results. Tutorials cannot function properly unless you do the
work in advance.

You may work with others, but you must understand the work; you can’t
phone a friend during the exam.

Assessment is formative, meaning that marks from coursework do not
contribute to the final mark. But coursework is not optional. If you do
not do the coursework you are unlikely to pass the exams.

Attendance at tutorials is obligatory; please let your tutor know if you
cannot attend.




Consider the following clausal form:

{{R,—-A} {G A}}

Resolving on A, we get:

{R,—A} {G, A}
{R,G}
It’s worth remembering the reasoning behind resolution; If (RV =A) A (G V A) is
true, if A is true, = A must be false, and so for RV = A to be true, R must be true;
otherwise, A is false, and so for G V A to be true, G must be true; therefore, G V R
must be true.

(4)

Recall the discussion in last week’s tutorial sheet regarding clauses as constraints.
We can visualise this resolution using Venn diagrams. Remember, here we are inter-
ested in the regions excluded by the clauses—the regions in white. Thus, the original
clauses exclude:

{R,-A} {G, A}

Our resolvent excludes (white regions):

{R,G}

Compare this to the valuations excluded by the whole clausal form (the union of the
set of valuations excluded by the individual clauses):

{ {R’ _'A} ) {G’ A} }
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We see that the valuations excluded by the resolvent are a subset of the valuations
excluded by the conjunction of the original clauses (resolvends); that is to say, the
resolvent only excludes valuations that were already excluded by the resolvents; or
again—the resolvends entail the resolvent.

RV-AGVAFRVG

Now, let us consider a case that can be resolved to the empty set:

{ {R7 _'A} ) {R= A} ) {_'R7 _'G} ) {_'R? G} }

{R,-A}  {R A}
1843

{~R,-G}  {-R.G}
il

(4)
{}

(@)

(R)

Using Venn diagrams:

©e® 00

Here, the resolution process shows us that all valuations are excluded by the conjunc-
tion of the clauses; thus we can see that the clausal form has no satisfying valuations;
it is contradictory.!

You may have noticed that here, the sets of valuations excluded by the resolvents are identical
to the unions of the sets excluded by their resolvends; this happens when the resolvends differ only
in the literal to be resolved upon.



1. Use resolution to show whether the following clausal forms are satisfiable or not.
Use Venn diagrams to check your answers, including intermediate resolvents.

(a) { {Av _'G} ) {G7 _'R} ) {R} ) {_'A} }

{A, -G} {G,-R}

(@)

{A, ~R} {R}

{4} {—4}

{}

The empty set was found: therefore, all valuations are excluded — every valua-
tion fails to satisfy at least one of the clauses; the clausal form is not satisfiable.

Once we have a derivation of the empty clause, given a valuation V, we can
find a constraint that it violates.

Every valuation, in particular, V, violates the impossible constraint repre-
sented by the empty clause. So we can work our way up the derivation tree,
starting from the root, then successively looking at a clause the violates V
and choosing a parent that also violates V, until we reach one of the original
clauses that violates V.




(b) { {R7 A} ) {_'R7 —A, _'G} }7 {G} }

{R, A} {-R,-A, -G}

{A,—=A, -G} {G}
Here, resolution leads to a trivial constraint, which is dropped. There
are no further opportunities for resolution and we have not produced the
empty clause. This is enough to show that we cannot produce the empty clause.

We can go further and produce a satisfying valuation. The resolution step
replaces the clauses mentioning R by the single clause A, = A, ~G. So we know
that any valuation, V of A and G, that satisfies both this clause, A, A, -G,
and the remaining clause, (G, can be extended with a suitable value for R to
satisfy the original clauses.

To satisfy G, V(G) must be T, but V(A) can take either Boolean value, to
satisfy A, - A, -G. Whichever value we choose for V(A), the assumptions of
the rule we have used can be satisfied by taking V(R) to be the complementary
value, =V (A).




A Karnaugh Map (or K-map), like a Venn diagram, is a visual representation of
a boolean expression. For domains consisting of four boolean letters, the map may
be presented as a four-by four grid—but note that the two-dimensional plane wraps
around on itself, from its bottom edge to its top, and from left to right - like the screen
in Pac-Man or Asteroids. This geometry may be represented on the surface of a torus.
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Figure 1: A Karnaugh map, wrapped around a torus and flattened out as a 4 x 4 grid.
Note that the four dotted corners on the grid are adjacent to each other, as shown on
the torus. The four-bit numbers show the state ABC' D represented by each square .

A K-map is often filled in with a 1 or 0 in each square, to indicate the truth or
falsity, in each state, of a Boolean function of four variables. You can use ones and
zeros, or colours or your choice, to indicate truth and falsity:.



2. First fill in the Karnaugh maps below to show the area corresponding to (the
truth of) each of the atomic propositions, and the negations of two of them.

AB

0o oo oL 11 10 oo

oo
oo

o1
01

CcD
11

CcD
11

10
10

AB

o1 11 10

oo

01

CD

11

10
10

C D -D
3. Consider the clausal form:
{{D,B},{A,-B},{-A,-B},{~C,-D} ,{C,~D} }
(a) Show the region corresponding each of the clauses in its own K-map:

AB AB AB

o0 ol 11 10 0o 01 11 10 0o 01 11 10

{D, B} {A,-B} {—A,-B}

{=C,-D} {C,-D}
(b) Now, take all clauses containing A or —A, and resolve on A every possible
pairing. Cross out the resolvends, and show the resolvent(s) in on the pro-

7



vided K-map. The remaining clauses from the original clausal form plus
the new resolvents are your resolution pool.

AB

oo ol 11 10

{A,-B} {-A,-B}
{~B}

Here the result, =B, of the resolution step excludes all those states excluded
by either of the resolved clauses.

(4)

If the previous step did not result in the empty clause being found, repeat
the procedure, this time resolving on B, again using every pair of clauses
in your resolution pool with complementary B-literals. Again, cross out
the resolvends. The remaining clauses, plus the new resolvents are your
updated resolution pool.

AB

o0 ol 11 10

{-B} {D,B}
{D}

Here the result, D, of the resolution step is harder to describe. It consists

of those states abed such that each of the states 0bed and 1bed is excluded

by at least one of the resolved clauses. [Note that this description would
also cover the previous step.|

(B)

If the previous step did not result in the empty clause being found, repeat
resolving on C'.

AB

oo ol 11 10

oo

oL

CcD

10 11

{-C,-D} {C,-D}
{~D}

(©)




(e) If the previous step did not result in the empty clause being found, repeat
resolving on D.

AB

o0 ol 11 10

oo

o1

CcD

11

10

{D} {=D}
{

(f) Was the empty clause found? Yes
(g) Is the clausal form satisfiable? No

(D)

The previous example was somewhat trivial, because at each stage you in fact only
had to resolve one pair of resolvends. This will not always be the case. Thus, if
you have three clauses containing C' and three containing —C', you will have nine
resolutions to perform on C'. In the worst case scenario, this can be computationally
intensive for large clausal forms; however, it has the advantage of guaranteeing that
once each atom has been resolved upon, if the clauses are not satisfiable, the empty
clause will have been found.

4. Consider the following clausal form:
{ {A} ) {Ba_'D} ) {_‘A> -B,C, _‘D} ) {_‘A’D} }
(a) Again, show the region corresponding to each clause in its own K-map:

AB AB

oo oL 11 10 oo o1 11 10

oo

01

CcD

11

10

{A} {B,~D}

{-A,-B,C,-D} {—A, D}



(b) Following the same procedure as before, resolve on each atom in turn:

Superscript letters are prepended to each clause used in the resolution, to
indicate the resolution variable used to eliminate that clause.

Resolve Resolve Resolve Resolve
A B C D
B{-B,C,-D} | P{C,-D} none! {C}
> D)

|
BB,-D
A-A,-B,C, =D
A-A,D

AB

00 01 11 10 00

CcD

1 01 00

CcD

11 01 00

10
10

(c) Was the empty clause found? No
(d) Is the clausal form satisfiable? Yes

Resolution terminates with the single clause C'. We can satisfy this by taking
V(C)=T.
Then we can extend the valuation to a satisfying valuation for all of the original

clauses, by working backwards through each step.

Looking first at the clauses labelled © we see that V(D) must be T, to make
both C, =D and D true.

The next step is to consider clauses labelled Z. It is trivial to check that taking
V(B) = T makes both =B,C, =D and B, D true.

Finally, consider the clauses labelled 4. It is trivial to check that taking V(A) =
T makes these remaining clauses true.

A satisfying valuation is given by A, B, C, D.

The properties of the resolution step tell us that whenever this resolution pro-
cedure fails to derive the empty clause, there will be a satisfying valuation for
the remaining clauses, and that any such valuation can be extended stepwise to
give a valuation that satifies all of the original clauses.
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The resolution procedure is complete: if the constraints are inconsistent we will
derive the empty clause, and refute every valuation. Otherwise, we can use the
failure to produce the empty clause to produce a valuation that satisfies all the
constraints.

5. Our next example includes 6 clauses:
{{AWB}7{A7ﬁB7ﬁC}7{ﬁAWD}a{ﬁB7CVD}a{ﬁB7ﬁD}7{ﬁAwB7ﬁD}}

(a) Show each clause in its own K-map:
AB AB AB

oo oL 11 10 oo o1 11 10 oo o1 11 10

CD
11 01 oo

10

{4, B}

{AwﬁB7ﬂC}

{_'AvD}

{—B,C, D} {=B,-D} {—=A, B,~D}
(b) Following the same procedure as before, resolve on each variable in turn
Resolve Resolve Resolve Resolve
A B C D
TA B P{B,D} “-C.D} | (D} 0
4A,-B,-C BIB,-D} “{C,D}
A-A,D | B{-B,-C,D} {D,-D}
B-B,C,D | {B,-B,—-C,-D} | {~C,D,~D}
B-B,~D | Note: this clause | {C,D,—~D}
4-A, B,—~D is tautologous, PI-D}

1t cannot
contribute to

further resolution.

11 01 00

CcD
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(c) Was the empty clause found? Yes
(d) Is the clausal form satisfiable? No

6. Of course, logical claims can consist of arbitrarily many atoms, and our ability to
usefully represent them visually is eventually exhausted. However, resolution
can be applied to sets of clauses with any number of atoms. This question
concerns the resolution of the claim that:

P—(QVR),Q—-SSVRR—-Q,(QANR) -THP—>T

(a) Express each of the assumptions, and the negation of the conclusion, in
clausal form.
i. P—>(QVR)
—PV (QV R) by arrow elimination
- PV QV R by associativity
{-P,Q, R}
ii. Q — S
=) V =S by arrow elim
{-Q, -5}
iii. SV R{S, R}
iv. R—Q
- RV Q by arrow elim
{-R.Q}
v.  QAR)—=T
=(Q AN R) VT by arrow elim
(=QV —R) VT by De Morgan
=@V -R VT by associativity
{_|Q7 _‘R'/ T}
vi. =(P —1T)
—(=P VT) by arrow elim
——P A =T by De Morgan
P AN =T by double negation elimination
{P}.{-T}
(b) Use resolution to determine whether the negation of the conclusion is con-
sistent with the conjunction of the assumptions.

12



Resolve P | Resolve ) | Resolve R | Resolve S | Resolve T’
PP Q,R Q. R RR,-S 5.8
Q-Q,-S R-R,-S | %-8,T T
RS R 5SS, T {}

=R, Q R,—~R,T S, -8

Q-Q,-R,T
rp R-R,T

T

(c) Is the original claim correct? YES!

7. This question concerns the 256 possible truth valuations of the following eight
propositional letters A, B,C, D, E, F, G, H. For each of the following expres-
sions, say how many of the 256 valuations satisfy the expression, and briefly
explain your reasoning. For example, the expression D is satisfied by half of the
valuations, that is 128 of the 256, since for each valuation that makes D true
there is a matching valuation that make D false.

(a) AN B 64 — one quarter of 256.

(b) (AVB)AC 96 — 3/4 of the 256 satisfy (AV B) and one half of these have
C' true, so the answer is 3/8 * 256

(¢c) (A — B) — C 160 === this is equivalent to (A — B) V C ; the first
disjunct is true for one quarter of the 256, and the second for half of them.
The overlap is one half of the first disjunct, so the answer is 5/8 * 256
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(d) (A— B)A(B = A)AN(C — D)N(D — E)N(E — F)NF — G)\N(G — H)

We can use the arrow rule to solve this:

1 2

It “A * B -T

can’t cut a loop

We find 2 valuations for A and B.
1 2 3 4 5 6 7

..and 7 for C, D, E, F, G, and H, giving 2 x 7 = 14 valuations in total
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(A= B)A(B—=A)AN(C —=D)AN(D —C)
NE—=->F)NF -G NG —H)

1 ~A* B -T

can’t cut a loop

We find 2 valuations for A and B.
1 2

1 ~C * .D ~T

can’t cut a loop

...2 valuations for C and D.

1 2 3 4 S

..and b5 for F, F', G, and H, giving 2 x 2 x 5 = 20 valuations in total
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(f)
(H — A)NA — BAC)AN(BVC — D)N(A — E)AN(E — F)N(F — G)N(G — H)

Noting that A — BAC'is equivalent to (A — B)A(A — C) and (BVC — D)
is equivalent to (B — D) A (C' — D), we derive the following graph, giving 6
satisfying valuations:

F
V2N
G can’t E

cuta
loop

——H —A—

This tutorial exercise sheet was written by Dave Cochran and Michael Fourman, with
additional contributions from an earlier tutorials produced by Paolo Besana, Thomas
French, and Areti Manataki. Send comments to Michael .Fourman@ed.ac.uk
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