
DPLL and Watched Literals

Week 7: 2-6 November 2015

Please attempt the entire worksheet in advance of the tutorial, and bring
with you all work, including (if a computer is involved) printouts of code
and test results. Tutorials cannot function properly unless you do the
work in advance.

You may work with others, but you must understand the work; you can’t
phone a friend during the exam.

Assessment is formative, meaning that marks from coursework do not
contribute to the final mark. But coursework is not optional. If you do
not do the coursework you are unlikely to pass the exams.

Attendance at tutorials is obligatory; please let your tutor know if you
cannot attend.

A brute-force search for valuations that satisfy a given conjunctive normal form
(cnf) is simple to code:

function SAT(phi,V)
phi|V = {} // {} is the empty set of clauses, equivalent to >
||

{} /∈ phi|V // {} is the empty clause, equivalent to ⊥
&&
let A = chooseLiteral (phi|V)
in

SAT (phi,V ^ A)
||
SAT (phi,V ^ not A)

where phi|V is the result of simplifying each clause of phi using V (remove any literal
set false by V; remove any clause set true by V), and chooseLiteral(phi|V) chooses
some literal occurring in the simplification .

We can picture the execution of this code by constructing a tree, with a node for
each call of SAT. The node for a call of SAT(phi,V) is labelled V, and has a child node
for each recursive call it makes, if any.

1



1. Draw the tree resulting from a call SAT(phi,[]), where phi consists of the
following set of clauses 

{ A, B, C },

{ ¬A, ¬B, ¬C },

{ B, C, D },

{ ¬B, ¬C, ¬D },

{ A, C, D },

{ ¬A, ¬C, ¬D },

{ A, B, D },

{ ¬A, ¬B, ¬D }


and chooseLiteral selects the first available literal, in the ordering where
atoms are ordered alphabetically, and for each atom, X, ¬X comes immedi-
ately after X.

The search visits the following partial valuations :

{}, {A}, {A,B},
{A,B,¬C}, (Since C does not occur in (phi| A,B))

{A,B,¬C,¬D} (Since D does not occur in (phi| A,B,¬ C))

{}

{A}

{A,B}

{A,B,¬C}

{A,B,¬C,¬D}

2



There is indeed a bug in this specification of chooseLiteral. The (ill-stated)
intention was to consider A as occurring in ¬A, so that each atom is visited
before its negation.

With this interpretation, the search visits the following partial valuations :

{}, {A}, {A,B}, {A,B,C}[2],
{A,B,¬C}, {A,B,¬C,D}[7],

{A,B,¬C,¬D}}

{}

{A}

{A,B}

{A,B,C} {A,B,¬C}

{A,B,¬C,D} {A,B,¬C,¬D}

Next year this question will be amended!

3



2. In this question you will solve the same example, using a single watched literal.

The first few steps are done for you.

A > > > > > >

B > > > > >

C > ⊥ ⊥ ⊥

D > ⊥

(A∨B∨C) 1

(¬A∨¬B∨¬C) 1 2 3 ×

(B∨C∨D) 1

(¬B∨¬C∨¬D) 1 2

(A∨C∨D) 1

(¬A∨¬C∨¬D) 1 2 *

(A∨B∨D) 1

(¬A∨¬B∨¬D) 1 2 3 ×
At each step of the search we use one column of the table provided to record in
the first 4 squares the truth values assigned to the atoms, A,B,C,D, and in the
remaining 12, the position of the watched literal for each of the eight clauses.

We start with the empty valuation, watching the first literal in each clause.

We only look at watched literals that would be refuted by the latest variable
assignment. So, at each step we consider only those clauses watching the literal
we want to falsify.Because falsifying this literal cannot affect the invariant for
any other clauses.

In the next step (in the second column), we make A true. To maintain the
invariant, that each watched literal is either unassigned or true, we have to
change the literal we are watching for those clauses where we are watching ¬A.
In the next step we make B true, and have find a new literal to watch for those
clauses where we are watching ¬B.

In the following step, we try making C true. The first clause is OK, but in the
second clause, we are watching ¬C and every literal in this clause is refuted by
the current assignment. We have to backtrack.

4



We place an × in the watched variable square if we find a clause for which the
current partial valuation leaves no unrefuted literal we can watch to maintain
our invariant. In this case the search must backtrack.

So far we have explored only part of the search tree:

{}

{A}

{A,B}

{A,B,C}

We are searching for a valuation that makes all clauses true. Once we have
arrived at a valuation that makes one clause false, our way is blocked. We
know that we must find another path to satisfaction. Backtracking means that
we retrace our steps, returning to previous partial valuations, to find some
unexplored turning. The pattern of exploration specified by the recursion in
Q 1 is to take the first unexplored path.

We backtrack, abandoning our attempt to falsify the watched literal, which we
leave unchanged. This means that the invariant still holds. When we backtrack,
we don’t need to undo any changes we have already made, to the watched
literals for other clauses, since making more variables unassigned won’t harm
our invariant.

In this case we found the contradiction before we got to looking at clause 6, but
if we had taken the clauses in a different order the outcome would have been
the same.

In this case we only have to backtrack one step. We try to make C false, and
find that our invariant is satisfied with the existing watched literals.

You should continue the search, until you find a state where every watched
literal is assigned >, which means that we have a satisfying valuation.

We try making D True, but we are watching ¬D in the last clause, and there is
no True or unwatched literal available, so we backtrack and make D False. All
that is needed here is to check that no clause is watching D. None is, so we can
be sure that the invariant is satisfied for every clause. Thus we have a solution.

5



Here is another copy of the table..

A

B

C

D

6



3. Now we will solve the same problem, using two watched literals.

The invariant is that if one of the watched literals is ⊥ then the other is >. So
if we make one of the watched literals false, and there are no more unrefuted
literals we can watch, we have to make the other true, or fail.

A > > > >

B > > >

C ⊥ ⊥

D ⊥

(A∨B∨C) 1,2

(¬A∨¬B∨¬C) 1,2 2,3 ¬C

(B∨C∨D) 1,2 +

(¬B∨¬C∨¬D) 1,2 2,3

(A∨C∨D) 1,2 +

(¬A∨¬C∨¬D) 1,2 2,3

(A∨B∨D) 1,2

(¬A∨¬B∨¬D) 1,2 2,3 ¬D

At each step we consider only those clauses watching the literal we want to falsify.
Because falsifying this literal cannot affect the invariant for any other clauses.

For the first step, setting A true, we consider those clauses watching ¬A. We
simply move our sights for one of the watched literals, as before.

When we set B true, we must look at those clauses watching ¬B — clauses 2, 4,
and 8. For clause 4 we can restore the invariant by watching a different literal, but
for clauses 2 and 8 we have no room to move. If we make B true then we must make
both C false, and D false.

We try both of these, in sequence — if either attempt fails then our attempt to
make B true will have failed.

In the next column we have to look at clauses watching C (because we are trying
to make C false. In each case (marked by ’+’) we find that the other watched literal
is true, so we can make C false without violating our invariant.

In the final column, we try making D false. We have to check any clauses watching
D. — There are none! This is sufficient to show that we have a total valuation and

7



our invariant is satisfied.
Because we have managed to find a set of watched variables satifying our invariant,

while making both C and D false, we have assigned values to all the variables.
For each watched pair of literals, if one is false under our valuation, then the other

is true. Since none are unassigned, at least one of each pair is true, so each clause is
true under the valuation we have found. We have achieved our goal.

You should now use the each watched literal method to find a satisfying valuation
for the following clauses:


{ ¬A, ¬B, C }, { B, ¬C, D }, { A, ¬C, D },

{ ¬A, B, ¬C }, { B, C, ¬D }, { A, C, ¬D },

{ A, ¬B, C }, c{ ¬B, ¬C, ¬D }, { ¬A, C, D }


1. One watched literal:

A > > > > >

B > > > >

C > > >

D > ⊥

¬A, ¬B, C 1 2

¬A, B, ¬C 1 2

A, ¬B, C 1

B, ¬C, D 1

B, C, ¬D 1

¬B, ¬C, ¬D 1 2 3 ×

A, ¬C, D 1

A, C, ¬D 1

¬A, C, D 1 2
You should check your valuation against each clause to see every clause is sat-
isfied.

8



2. Two watched literals

A > > > >

B > > >

C > >

D ⊥

¬A, ¬B, C 1,2 2,3 C

¬A, B, ¬C 1,2 2,3 +

A, ¬B, C 1,2 +

B, ¬C, D 1,2

B, C, ¬D 1,2

¬B, ¬C, ¬D 1,2 2,3 ¬D

A, ¬C, D 1,2

A, C, ¬D 1,2

¬A, C, D 1,2 2,3 +

At each step we consider only those clauses watching the literal we want to falsify.
Because falsifying this literal cannot affect the invariant for any other clauses.

We start as before. When we make A true, we must attend to clauses watching
¬A; of which there are 3. When we then make B true, we find that clauses 1, 3 and
6 are watching ¬B. To maintain the invariant for clause 1 we must make C True (we
don’t do this yet, but it will be our next step). For clause 3, making ¬B False is ok
as the other watched literal, A, is True. For clause 6 we must watch the final clause
to maintain the invariant.

Now, we try making C true. We are watching ¬C in clauses 2, 6, and 7. For
clause 2, the invariant holds as the other watched literal, B, is True. Clause 6 tells us
that we must make ¬D True. For clause 7, the invariant holds as the other watched
literal, A, is True.

We try making ¬D true, so we have to find clauses watching D. The only one is
clause 9. The invariant holds as C, the other watched literal, is true. Since we have
a complete valuation and the invariant holds, we know that our valuation satisfies
every clause.

9



If you’re not yet satisfied — and you have have both the time and the inclination
— you could add the negation of your satisfying valuation to the original clauses, and
use either method again to see if you can find a different satisfying valuation.

10


