Informatics 1 - Computation & Logic: Tutorial 9 Solutions

Revision

Week 11: 25 - 29 November 2013

Truth tables

1. Construct a truth table for the following expression of propositional logic, and use these to decide whether the expressions are contingent, tautologous or inconsistent:

 $\neg (A \land B) \land (B \lor (C \to \neg A))$

Α	В	C	$\neg A$	$A \wedge B$	$\neg (A \land B)$	$C \rightarrow \neg A$	$B \vee (C \to \neg A)$	expr
Т	Т	т	F	т	F	F	т	F
т	т	F	F	т	F	Т	т	F
т	F	Т	F	F	т	F	F	F
F	Т	т	т	F	т	Т	т	т
F	Т	F	т	F	т	т	т	т
F	F	т	Т	F	т	т	т	т
т	F	F	F	F	т	т	т	т
\mathbf{F}	F	F	Т	F	т	т	т	т

This expression is $\underline{CONTINGENT}/TAUTOLOGOUS/INCONSISTENT$

Sequent Calculus

2. Assume the following proof rules from Tutorial Exercise 4, known respectively as 'immediate', ' \wedge introduction', ' \rightarrow introduction', ' \wedge elimination' and ' \rightarrow elimination':

$$\underbrace{\begin{array}{c} \mathcal{A}, X \vdash X \\ \mathcal{A}, X \vdash X \\ \mathcal{A} \vdash Y \end{array}}_{\mathcal{A} \vdash Y} \underbrace{\begin{array}{c} \mathcal{A} \vdash X \land Y \\ \mathcal{A} \vdash X \\ \mathcal{A}, X \vdash Y \end{array}}_{\mathcal{A}, X \vdash Y}$$

$\mathcal{A}, X \wedge Y \vdash Z$	$\mathcal{A}, X \!\rightarrow\! Z \vdash Z$
$\mathcal{A}, X, Y \vdash Z$	$\overline{ \mathcal{A} \vdash X }$

Prove that the following argument is valid using this method: $[A,\,(A\wedge B)\to C]\vdash B\to C$

 $\begin{array}{l} \operatorname{Applying} \to intro \ \text{we obtain:} \\ [A, (A \land B) \to C, B] \vdash C \\ \operatorname{Applying} \to elim \ \text{we obtain:} \\ [A, B] \vdash A \land B \\ \operatorname{Applying} \land intro \ \text{we obtain two branches:} \end{array}$ $\begin{array}{l} \bullet \\ [A, B] \vdash A \\ \operatorname{That \ can \ be \ proved \ immediatly} \end{array}$ $\begin{array}{l} \bullet \\ [A, B] \vdash B \\ \operatorname{That \ can \ be \ proved \ immediatly} \end{array}$

3. Here are some more proof rules, called respectively '\introduction left', '\introduction right', and '\elimination':

$\mathcal{A} \vdash X \lor Y$	$\mathcal{A} \vdash X \lor Y$	$\mathcal{A}, X \lor Y \vdash Z$
$\frac{A \vdash X}{A \vdash X}$	$\frac{A \vdash X \lor I}{A \vdash Y}$	$\mathcal{A}, X \vdash Z$
$\mathcal{A} \sqsubset \Lambda$	$\mathcal{A} dash I$	$\mathcal{A}, Y \vdash Z$

Prove that the following argument is valid:

$$[(\mathsf{A} \lor \mathsf{B}) \to \mathsf{C}, \, \mathsf{C} \to \mathsf{A}] \vdash \mathsf{B} \to \mathsf{C}$$

 $\begin{array}{l} \operatorname{Applying} \to \mathit{intro} \ \mathrm{we \ obtain:} \\ [(\mathsf{A} \lor \mathsf{B}) \to \mathsf{C}, \ \mathsf{C} \to \mathsf{A}, \ \mathsf{B}] \vdash \mathsf{C} \\ \operatorname{Applying} \to \mathit{elim} \ \mathrm{we \ obtain:} \\ [\mathsf{C} \to \mathsf{A}, \ \mathsf{B}] \vdash \mathsf{A} \lor \mathsf{B} \\ \operatorname{Applying} \ \forall \mathit{introduction} \ left \ \mathrm{we \ obtain} \ a \ first \ branch \ to \ prove. \ If \ it \ can \ be \\ proved, \ we \ have \ finished. \end{array}$

 $\label{eq:constraint} \begin{array}{l} [\mathsf{C} \to \mathsf{A}, \, \mathsf{B}] \vdash \mathsf{A} \\ \text{We can try to apply} \to elim \text{ and obtain:} \\ [\mathsf{B}] \vdash \mathsf{C} \\ \text{That cannot be proved. We have to backtrack and try the second branch.} \end{array}$

Applying $\forall introduction right$ we obtain the second branch:

 $\begin{bmatrix} \mathsf{C} \to \mathsf{A}, \, \mathsf{B} \end{bmatrix} \vdash \mathsf{B}$ That can be proved immediatly

•

 $4.\,$ Using resolution, prove whether the following argument is valid:

 $(P \land Q) \to R, \neg R \vdash P \to \neg Q$

(a) Convert into conjunctions:

$$\left((P \land Q) \to R) \land \neg R \land \neg (P \to \neg Q) \right)$$

- (b) Convert to conjunctive normal form: $\begin{array}{c}
 ((P \land Q) \rightarrow R) \land \neg R \land \neg (P \rightarrow \neg Q) \\
 (\neg (P \land Q) \lor R) \land \neg R \land \neg (\neg P \lor \neg Q) \\
 (\neg P \lor \neg Q \lor R) \land \neg R \land P \land Q
 \end{array}$
- (c) Convert into clausal form: $\boxed{\left[\left[\neg P, \neg Q, R\right], \left[\neg R\right], \left[P\right], \left[Q\right]\right]}$
- (d) Apply the resolution rule:

$$\begin{bmatrix} [\underline{\neg P}, \neg Q, R], [\neg R], [\underline{P}], [Q] \end{bmatrix} \\ \begin{bmatrix} [\underline{\neg Q}, R], [\neg R], [\underline{Q}] \end{bmatrix} \\ \begin{bmatrix} [\underline{R}], [\underline{\neg R}] \end{bmatrix} \\ \begin{bmatrix}] \\ \end{bmatrix} \\ This means that the argument is valid.$$

5. Using resolution, prove whether the following argument is valid:

$$P \to Q, P \to R \vdash P \to (Q \land R)$$

(a) <u>Convert into conjunctions</u>:

$$(P \to Q) \land (P \to R) \land \neg (P \to (Q \land R))$$

- (b) Convert to conjunctive normal form: $\begin{array}{c}
 (P \to Q) \land (P \to R) \land \neg (P \to (Q \land R)) \\
 (\neg P \lor Q) \land (\neg P \lor R) \land \neg (\neg P \lor (Q \land R)) \\
 (\neg P \lor Q) \land (\neg P \lor R) \land P \land \neg (Q \land R) \\
 (\neg P \lor Q) \land (\neg P \lor R) \land P \land (\neg Q \lor \neg R)
 \end{array}$
- (c) Convert into clausal form:

 $\left[\left[\neg P,Q\right],\left[\neg P,R\right],\left[P\right],\left[\neg Q,\neg R\right]\right]$

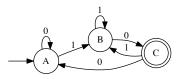
(d) Apply the resolution rule:

$$\begin{bmatrix} [\neg P, \underline{Q}], [\neg P, R], [P], [\neg \underline{Q}, \neg R] \end{bmatrix} \\ \begin{bmatrix} [\neg P, \underline{\neg R}], [\neg P, \underline{R}], [P] \end{bmatrix} \\ \begin{bmatrix} [\underline{\neg P}], [\underline{P}] \end{bmatrix} \\ \begin{bmatrix} \end{bmatrix} \\ \end{bmatrix}$$
This means that the argument is not

valid.

Finite State Machines

6. Consider the following finite state acceptor over the alphabet $\{0, 1\}$:



(a) Draw the transition table for this machine:

	0	1
Α	Α	В
В	С	В
С	Α	В

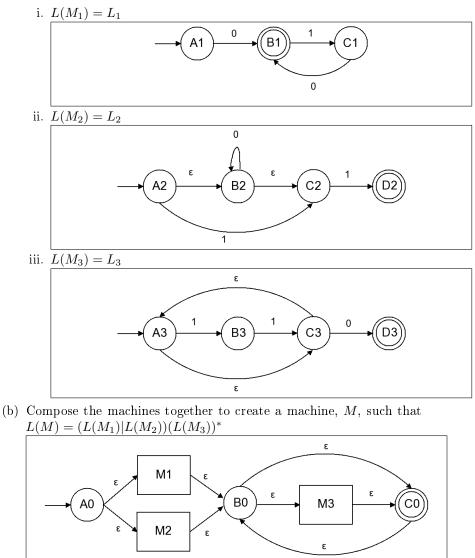
(b) For each of the following strings, say whether they are *accepted* or *rejected* by this machine and indicate in which state the machine ends. Note that ϵ denotes the empty string.

STRING	ACCEPT/REJECT	FINAL STATE
110	А	С
1010	А	С
101	R	В
0011010	А	С
10011	R	В
110110	А	С
0110	А	С
00	R	А
00111	R	В
ϵ	R	А

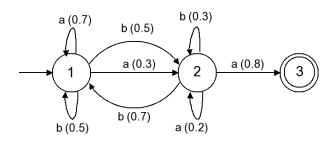
(c) Give the language for the above FSM:

0*11*0(11*0)*(00*11*0(11*0)*)* (any string ending in 10)

- 7. Given the following languages $L_1(0(10)^*)$, $L_2((1|0^*)1)$ and $L_3((11)^*0)$,
 - (a) Draw deterministic or non-deterministic machines M_i for each of the languages L_i , such that:



8. Consider the following Probabilistic Finite State Machine that accepts strings over the alphabet {a, b}.



- (a) Identify all possible traces that would accept string abaa.
 There are 4 possible traces: 1a1b1a2a3, 1a1b2a2a3, 1a2b2a2a3 and 1a2b1a2a3.
- (b) Calculate the probability of each trace identified.

The probability of 1a1b1a2a3 is: 0.7 * 0.5 * 0.3 * 0.8 = 0.084The probability of 1a1b2a2a3 is: 0.7 * 0.5 * 0.2 * 0.8 = 0.056The probability of 1a2b2a2a3 is: 0.3 * 0.3 * 0.2 * 0.8 = 0.0144The probability of 1a2b1a2a3 is: 0.3 * 0.7 * 0.3 * 0.8 = 0.0504

(c) Finally, calculate the probability that the string **abaa** would be accepted by this FSM.

It is the sum of the probabilities per trace, thus: 0.084 + 0.056 + 0.0144 + 0.0504 = 0.2048

This tutorial exercise sheet was written by Paolo Besana and extended by Thomas French and Areti Manataki. Send comments to A.ManatakiQed.ac.uk