Informatics 1 - Computation & Logic: Tutorial 7 Solutions

Computation: Regular Expressions

Week 9: 11-15 November 2013

Re

Wh	ich language is defined by the following regular expression?
	(a ab)(c bc)
a	$\{c,abc,abbc\}$
Wr	ite FOUR other regular expressions which define the same language.
ac	$abc abbc$, $(a ab abb)c$, $ac (ab(bc c))$, $a(\epsilon b bb)c$
	her solutions are possible.
Wh	
Wh	her solutions are possible. ich languages are defined by the following regular expressions?
Wh (a)	her solutions are possible. ich languages are defined by the following regular expressions? ($a b$)*

(c)	$(ab)^*$
	ϵ , ab , $abab$, $ababab$, $abababab$,
(d)	ab^*
	$[a, ab, abb, abbb, abbbb, \dots]$
(e)	$((ba^*b) a^*)^*$
	any string over $\{a,b\}$ which contains an even number of b 's
Writ	te regular expressions for the following languages:
(a)	the set of strings over $\{a,b\}$ which contain no more than two a 's
	$b^* \mid b^*ab^* \mid b^*ab^*ab^*$ [others possible]
(b)	the set of strings over $\{a,b\}$ which both start and end with a
	$a \mid a(a b)^*a$ [others possible]
(c)	the set of binary numbers which are multiples of four
	1(0 1)*00 [others possible]

4.

5. Verify if the following regular expressions are equivalent, using the following algebraic laws:

$$L(\emptyset|R) = L(R) = L(R|\emptyset) \tag{1}$$

$$L(R|R) = L(R) \tag{2}$$

$$L(R|S) = L(R) \cup L(S) = L(S|R) \tag{3}$$

$$L((R|S)|T) = L(R|(S|T)) \tag{4}$$

$$L(\epsilon R) = L(R) = L(R\epsilon) \tag{5}$$

$$L(\emptyset R) = L(\emptyset)L(R) = L(\emptyset) = L(R\emptyset)$$
(6)

$$L((RS)T)) = L(R(ST)) \tag{7}$$

$$L(R(S|T)) = L(R)L(S|T) = L(RS|RT)$$
(8)

$$L((R|S)T) = L(R|S)L(T) = (L(R) \cup L(S))L(T) = L(RT|ST)$$
(9)

$$L(\emptyset^*) = L(\emptyset)^* = \{\epsilon\} = L(\epsilon) \tag{10}$$

$$L(RR^*) = L(R)L(R^*) = L(R^*R)$$
(11)

$$L(RR^*|\epsilon) = L(R^*) \tag{12}$$

$$L((R|S)^*) = L((R^*S^*)^*)$$
(13)

$$L((RS)^*R) = L(R(SR)^*)$$
(14)

(a) $((aa^* \mid \epsilon) c) \mid ((b \mid b) c)$ equivalent to $(a^* \mid b) c$

YES: $(aa^* \mid \epsilon)$ is equivalent to a^* , $(b \mid b)$ is equivalent to b, so we obtain:

 $a^*c \mid bc$, that is equivalent to $(a^* \mid b) c$

(b) $(a(ba)^*b | (ab)^*)$ equivalent to (ab)

NO: $a(ba)^*b$ is equivalent to $(ab)(ab)^*$ $(ab)^*$ becomes $(ab)(ab)^* \mid \epsilon$, yielding

 $(ab)(ab)^* \mid (ab)(ab)^* \mid \epsilon$

that can be transformed into: $(ab)(ab)^* \mid \epsilon$ that is equivalent to: $(ab)^*$, and not (ab)

(c) $((\epsilon (a \mid \emptyset))^* b^*)^*$ equivalent to $(a \mid b)^*$

YES: $(\epsilon (a \mid \emptyset))$ is equivalent to $(a \mid \emptyset)$, that in turn is equivalent

to a, yielding $(a^*b^*)^*$ that is equivalent to $(a \mid b)^*$

This tutorial exercise sheet was written by Paolo Besana, and revised by Thomas French and Areti Manataki. Send comments to A.Manataki@ed.ac.uk