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1. (a) Explain what it means for an entailment to be valid.

(b) For each of the following entailments, use a truth table to determine whether
it is valid.

i. A |= ((A → B) → B)

ii. (¬(A → ¬B) → ¬A) |= B

iii. (A → ¬B) |= (¬C → B) → (A → C)

(c) This part concerns the 256 possible truth valuations of the following eight
propositional letters A,B,C,D,E, F,G,H. For each of the following ex-
pressions, say how many of the 256 valuations satisfy the expression, and
briefly explain your reasoning. For example, the expression D is satisfied by
half of the valuations, that is 128 of the 256, since for each valuation that
makes D true there is a matching valuation that makes D false.

i. C ∨ A ∨B

ii. (E ∧ F ) ∨ C

iii. (B → D) → A

iv. B → (D → A)

v. (A → H) ∨B

vi. (A ∨H) → B

vii. (A ∨H) ∧B

viii.
(A → B) ∧ (B → C) ∧ (D → E) ∧ (F → G) ∧ (G → H)

ix.

(A → B) ∧ (C → D) ∧ (D → A)

∧ (E → F ) ∧ (F → E) ∧ (G → H) ∧ (H → E)

x.

(A → (B∧C∧D))∧((B∨C∨D) → E)∧(E → (F∧G))∧((F∨G) → H)
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2. You are given the following inference rules: (Γ,∆ vary over finite sets of expres-
sions; A,B vary over expressions):

Γ, A,B ` ∆, A
(I)

Γ, A,B ` ∆

Γ, A ∧B ` ∆
(∧L)

Γ ` A,B,∆

Γ ` A ∨B,∆
(∨R)

Γ, A ` ∆ Γ, B ` ∆

Γ, A ∨B ` ∆
(∨L)

Γ ` A,∆ Γ ` B,∆

Γ ` A ∧B,∆
(∧R)

Γ ` A,∆ Γ, B ` ∆

Γ, A → B ` ∆
(→ L)

Γ, A ` B,∆

Γ ` A → B,∆
(→ R)

Γ ` A,∆

Γ,¬A ` ∆
(¬L)

Γ, A ` ∆

Γ ` ¬A,∆ (¬R)

(Where A and B are propositional expressions, Γ,∆ are sets of expressions, and
Γ, A refers to Γ ∪ {A}.)

(a) Use these rules to determine whether each of the following entailments is
valid. In each case, either give a proof or use a failed proof attempt to
produce a counter-example.

i.
P → Q ∧ (R → ¬Q) ` R → ¬P

ii.
(P → Q) → R ` P → (R ∨ ¬Q)

(b) Show that the rule (¬L) is sound.

(c) Show that the rule (∧R) has the following property:
A counterexample to either of its antecedents (above the line) is a coun-
terexample to its conclusion.
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3. It is claimed that the proposition U follows from the following three assumptions:

¬(¬T ∧Q) (¬U → T ) ∧ (¬S → ¬P ) ¬U → (T → (¬S ∧ P ))

This question concerns the resolution of this claim.

(a) Express each of the assumptions in clausal form.

i. ¬(¬T ∧Q)

ii. (¬U → T ) ∧ (¬S → ¬P )

iii. ¬U → (T → (¬S ∧ P ))

(b) Explain how you would use resolution to determine whether the claim is
correct.

(c) Use resolution to determine whether the claim is correct. (Show your work-
ing.)
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4. (a) Which of the following strings are accepted by the NFA in the diagram?
(The start state is indicated by an arrow and the accepting state by a double

border.)

1 2

0

3Start

a
b

a bb
4

NFA

a

i. abbaabb

ii. aabb

iii. abaaabab

(b) Draw a DFA that accepts the same language. Label the states of your DFA
to make clear their relationship to the states of the original NFA.

(c) Write a regular expression for the language accepted by this NFA.

(d) For each of the following regular expressions, draw a non-deterministic finite
state machine that accepts the language described by the regular expression.

i. (x|xy)

ii. x∗y

iii. (x|y)(xy)∗
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