Informatics 1

Lecture 4
Finite Situations

Michael Fourman

No crowded shops are comfortable.

```
The expression \operatorname{Crowded}(s) \to \operatorname{Comfortable}(s)
means \{s \mid \operatorname{Crowded}(s) \to \operatorname{Comfortable}(s)\}.
```

To make the universal statement that all crowded shops are uncomfortable,

```
we write, \forall s. \operatorname{Crowded}(s) \to \operatorname{Comfortable}(s), which means, \{s \mid \operatorname{Crowded}(s) \to \operatorname{Comfortable}(s)\} = S,
```

where S is the set of all shops.

No crowded shops are comfortable.

To make the existential statement that *some* crowded shops are comfortable, we introduce a third expression:

```
we write, \exists s. (\operatorname{Crowded}(s) \land \operatorname{Comfortable}(s)) which means, \{s \mid \operatorname{Crowded}(s) \land \operatorname{Comfortable}(s)\} \neq \emptyset
```

where $\emptyset = \{\}$ is the empty set.

So, to state that *no* crowded shops are comfortable,

we write,
$$\neg \exists s. (\operatorname{Crowded}(s) \land \operatorname{Comfortable}(s))$$
 which means, $\{s \mid \operatorname{Crowded}(s) \land \operatorname{Comfortable}(s)\} = \emptyset$

Relational Structures

Relational Structures

properties and relations

properties and relations

Graphs

nodes x, y, z, \ldots E(x, y)

Directed Graphs

nodes x, y, z, \ldots L(x, y)

$$\forall x \neq a. L(x, a) \equiv \forall x. x \neq a \rightarrow L(x, a)$$
$$\equiv L(e_0, a) \land L(e_1, a) \land L(e_2, a) \land \dots L(e_{n-1}, a)$$

$$\exists x \neq a. L(x, a) \equiv \exists x. x \neq a \land L(x, a)$$
$$\equiv L(e_0, a) \lor L(e_1, a) \lor L(e_2, a) \lor \dots L(e_{n-1}, a)$$

A table of data. Each entry in a cell is a datum Books

isbn	title	author	pubID	pages
029785593X	From Nature To Plate	Tom Kitchin	7642	272
955904609	Cookbook	Martin Wishart	3556	256
•••			•••	
	•••		•••	•••
•••	•••	•••	•••	•••

Relational Data

Rows represent the things we're interested in.

Books We call each row a record.

isbn	title	author	pubID	pages
029785593X	From Nature To Plate	Tom Kitchin	7642	272
955904609	Cookbook	Martin Wishart	3556	256
•••	•••	•••	•••	•••
•••	•••	•••	•••	•••
•••	•••	•••	•••	•••

A table of similar records is called a relation.

Relational Data

Columns represent properties or attributes.

Books Each of these is a **field**.

isbn	title	author	pubID	pages
029785593X	From Nature To Plate	Tom Kitchin	7642	272
955904609	Cookbook	Martin Wishart	3556	256
			•••	•••
	•••		•••	•••
	•••		•••	•••

Each record in the relation has the same format.

Relational data

Publishers

	ID	n	name		address	
	7642	Weidenfel	d & Nicolson	London		
	3556	Mr Max	Mr Max Publishing		Edinburgh	
Books					•••	
isbn		title	author	pubID	pages	

isbn	title	author	pubID	pages
029785593X	From Nature To Plate	Tom Kitchin	7642	272
955904609	Cookbook	Martin Wishart	3556	256
•••	• • • • • • • • • • • • • • • • • • • •		•••	

A typical database has many relations. An ID or key field uniquely identifies a record.

A query

Publishers

ID <	name	address
7642	Weidenfeld & Nicolson	London
3556	Mr Max Publishing	Edinburgh

Books

isbn		title	author	pubID	pages
029785593	From	Nature To Plate	Tom Kitchin	7642	272
X	•	•••			
955904609		Cookbook	Martin Wishart	3556	256
•••			***	Bisbn,title,pubID,pages,ID,address. pubID = ID ABooks(isbn,title,Tos Kitchin,pubID,pages APublishers(t#le,MatHr,pubID)	

```
\{\mathtt{name}\}
```

 \exists isbn, title, pubID, pages, ID, address.

$$pubID = ID$$

- ∧ Books(isbn, title, "Tom Kitchin", pubID, pages)
- \land Publishers(ID, name, address)

Relational data

- field
 - a property or attribute

key

relation or table

• set of records, representing a set of items

propositional methods

- first-order logic gives an expressive language for talking about structures
- for each fixed finite structure we can translate any first-order sentence into a propositional combination of atomic propositions

(A?B:C)

