
Informatics 1
SATisfaction revision

Michael Fourman

1

0

1

A

B
0 ≤ 1
⊥ ≤ ⊤

for booleans
A → B = ⊤

iff
A ≤ B

S

R

Q

P

⊤

⊥

If we have a chain of n-1 implications
between n variables

we can draw the line in n+1 places
making any number, from 0 to n,

of these variables true.

S

¬R

Q

¬P

⊤

⊥

If some of the variables
are negated we can do
the same (but making
the negated variables

false when they fall
above the line and true
when they fall below)

S

P

Q

¬P

⊤

⊥

If a variable appears
together with its

negation, we have to
draw the line between

them.

Here, P must be true.

(¬P → P) →P
is a tautology

S

¬R

Q

R

⊤

⊥

If a variable appears
together with its

negation, we have to
draw the line between

them.

Here, R must be false.

(R → ¬R) →¬R
is a tautology

S

¬R

Q

¬P

⊤

⊥

The same trick works if
our implications form a

partial order.
But we have more

options since we can
draw a wavy line. ¬W

VThe arrow rule says that,
whenever our line cuts an
arrow, then the head must
be on the side of true and
the tail on the side of false.

S

¬R

Q

¬P

⊤

⊥

The same trick works if
our implications form a

partial order.
But we have more

options since we can
draw a wavy line.

Not all of the valid truth
assignments are

represented in this
diagram.

How many are missing?

¬W

V

Clausal Form

9

Clausal form is a set of sets of literals
{ {¬A,C}, {¬B,D}, {¬E,B}, {¬E,A}, {A,E}, {E,B},{¬B, ¬C, ¬D} }

A (partial) truth assignment makes a clause true
iff it makes at least one of its literals true

(so it can never make the empty clause {} true)

A (partial) truth assignment makes a clausal form true
iff it makes all of its clauses true

(so the empty clausal form {} is always true).

A clausal form with at most two literals per clause.

Corresponds to a conjunction of implications.

We can draw the directed graph and count the
satisfying valuations.

When 3 or more are involved,
satisfaction gets complicated.

In general, we must search for satisfaction.

2-SAT

11

¬A⋁C

¬B⋁D¬B⋁¬C⋁¬D

A

AB

ABC ABC̅

ABCD ABCD̅

AB ̅

A̅

¬A ⋁ C
¬B ⋁ D

¬B ⋁ ¬C ⋁ ¬D

¬E ⋁ B

E ⋁ B
A ⋁ E

¬E ⋁ A

Naive search

Naive search

function Naive(V, Φ)
 if V ⊨ ¬Φ then return false;
 if V ⊨ Φ¬then return true;
 otherwise,
 choose an A mentioned in Φ
 but not mentioned in V
 return Naive(V^A, Φ)
 ||
 Naive(V^¬A, Φ)

(call Naive(∅, Φ))

13

¬A⋁C

¬B⋁D¬B⋁¬C⋁¬D

¬E⋁B
E⋁B

A

AB

ABC ABC̅

ABCD ABCD̅

AB ̅

ABC̅ ABC̅̅

ABC̅D
ABC̅D̅

¬A⋁C

ABC̅DE
ABC̅DE ̅ ABC̅D̅E

ABC̅D̅E ̅

¬E⋁B
E⋁B

A̅
Naive search

14

¬A⋁C

¬B⋁D¬B⋁¬C⋁¬D

¬E⋁B
E⋁B

A⋁EA⋁¬E

A

AB

ABC ABC̅

ABCD ABCD̅

AB ̅

ABC̅ ABC̅̅

ABC̅D
ABC̅D̅

¬A⋁C

ABC̅DE
ABC̅DE ̅ ABC̅D̅E

ABC̅D̅E ̅

¬E⋁B
E⋁B

A̅

A̅XXX

A̅XXXE
A̅XXXE ̅

function Naive(V, Φ)
 if V ⊨ ¬Φ then return false;
 if V ⊨ Φ¬then return true;
 if V, C ⊨ X,
 where X is literal and clause C ∈ Φ
 return Naive(V^X, Φ)
 otherwise,
 choose an A mentioned in Φ
 but not mentioned in V
 return Naive(V^A, Φ)
 ||
 Naive(V^¬A, Φ)

(call Naive(∅, Φ))

Davis Putnam Logemann Loveland (DPLL)

16

¬A⋁C
¬B⋁D

¬B⋁¬C⋁¬D

¬E⋁B

E⋁B
A⋁E

¬E⋁A

Idea! Use the problem to simplify the search

A
¬A
¬B⋁D

¬B

¬E⋁B

E⋁B
A⋁E

¬E⋁A

C

¬B⋁ ⋁¬D

B
¬A
¬B

¬B

¬E⋁B

E⋁B
A⋁E

¬E⋁A

¬B

D C

D

Unit Propagation

Davis Putnam Logemann Loveland (DPLL)
implementation - add V to Φ

unit propagation

function DPLL(Φ)
 if Φ is a consistent set of literals
 then return true;
 if Φ contains an empty clause
 then return false;
 for every unit clause l in Φ
 Φ ← unit-propagate(l, Φ);
 l ← choose-literal(Φ);
 return DPLL(Φ ∪ {l}) or DPLL(Φ ∪ {not(l)});

18

Clausal form is a set of sets of literals

X = { X0, X1, … , Xn-1 }

Resolution rule for clauses
X Y where ¬A ∈ X, A ∈ Y

(X ⋃ Y) \ { ¬A, A }

If either X or Y is a singleton then this is just unit propagation.

So, resolution is a generalisation of unit propagation.
Search is no longer needed

19

¬A⋁C

¬B⋁D¬B⋁¬C⋁¬D

AB

ABC ABC̅

ABCD ABCD̅
¬B⋁¬C⋁¬D ¬B⋁D

¬B⋁¬C

Premises

Conclusion

Any assignment of truth values that
makes all the premises true

will make the conclusion true.

The conclusion follows from the premises

A valid
inference

20

¬A⋁C

¬B⋁D¬B⋁¬C⋁¬D

AB

ABC ABC̅

ABCD ABCD̅
¬B⋁¬C⋁¬D ¬B⋁D

¬B⋁¬C

Premises

Conclusion

Any assignment of truth values that
makes the conclusion false will make

at least one of the premises false.
For any valid

inference

21

¬A⋁C

¬B⋁D¬B⋁¬C⋁¬D

AB

ABC ABC̅

ABCD ABCD̅
¬B⋁¬C⋁¬D ¬B⋁D

¬B⋁¬C

Premises

Conclusion

If some assignment
XYZ of values for ABC

makes the conclusion false
then the assignments XYZD and XYZD̅

each make one or other of the two premises false.

A special property
of this inference

¬B⋁¬C

A B C D E

¬A⋁B

¬B⋁C

¬C⋁D

¬D⋁E

¬A⋁C ¬A⋁D

¬B⋁D

B C D

¬A⋁E
¬B⋁E
¬C⋁E

We keep adding clauses obtained by resolution.
Davis Putnam - choose a variable then add all instances.
Different orders for resolution will give the same results.

Davis Putnam

Take a collection of clauses.

For each propositional letter, A
 For each pair ∊ ⋀ ∊ ⋀ A∊ ⋀ A∊
 if A return UNSAT
 if A is consistent
return SAT

Where A A, A

Heuristic: start with variables that occur seldom.

