
cl
Informatics 1
School of Informatics, University of Edinburgh

applied regex

✓implementing REs using finite state
automata

• using REs to find patterns

1

Informatics 1
School of Informatics, University of Edinburgh

Is there a regular expression for every
FSM?

2

L3 = (b b (a b)* b)*

2

3

1 b

b

a

b

L3 = (b (b a)* b b)*

Informatics 1
School of Informatics, University of Edinburgh

Is there a regular expression for every
FSM?

3

L3 = (b b (a b)* b)*

2

3

1 b

b

a

b

L3 = (b (b a)* b b)*

L3 = ε | b (b b b | b a)* bb

Informatics 1
School of Informatics, University of Edinburgh

Arden’s Lemma

4

If R and S are
regular expressions
then the equation
X = R | X S
has a solution X = R S*
If ε ∉ L(S) then this solution is unique.

X
R

S

REs and FSAs

• Regular expressions can be viewed as a
textual way of specifying the structure of
finite-state automata

• Finite-state automata are a way of
implementing regular expressions

Regular expressions
• A formal language for specifying text strings
• How can we search for any of these?

!woodchuck
!woodchucks
!Woodchuck
!Woodchucks

Regular Expressions for
Textual Searches

Who does it?

Everybody:
• Web search engines, CGI scripts
• Information retrieval
• Word processing (Emacs, vi, MSWord)
• Linux tools (sed, awk, grep)
• Computation of frequencies from corpora
• Perl

Regular Expression
• Regular expression: formula in algebraic

notation for specifying a set of strings

• String: any sequence of alphanumeric
characters

– letters, numbers, spaces, tabs, punctuation marks

• Regular expression search
–pattern: specifying the set of strings we want

–corpus: the texts we want to search through
http://www.inf.ed.ac.uk/teaching/courses/inf1/cl/tools/regex-crib.xml

9

10

11

Welcome to RegExLib.com, the Internet's first
Regular Expression Library. Currently we have

indexed 4736 expressions from 2214
contributors around the world.

http://www.regexlib.net/

http://xkcd.com/

13

% cat /usr/share/dict/words| egrep ^[poorsitcom]{10}$

14

$ cat /usr/share/dict/words| egrep ^[poorsitcom]{10}$
compositor
copromisor
crisscross
isoosmosis
isotropism
microtomic
optimistic
poroscopic
postcosmic
postscript
prioristic
promitosis
proproctor
protoprism
tricrotism
troostitic

15

% cat /usr/share/dict/words| egrep ^[poorsitcom]{10}$ | grep o.*o.*o
compositor
copromisor
isoosmosis
poroscopic
proproctor

The Turing Test
• Aim is to answer the question

Q1: “Can a machine think?”

• But what do we mean by “think”? and “machine”?

• Turing chose to replace Q1 by Q2

 Q2: “Are there imaginable digital computers which would do well
in the [Turing Test]?”

 Q3: “Can machines do what we (as thinking entities) can do?”

• Turing argues Q3 draws "a fairly sharp line between the
physical and intellectual capacities of a man."

The Turing Test: Background
• Participating in a natural language conversation is

hard:

‣ ambiguity

‣ vagueness

‣ context

‣ real world knowledge

‣

• Language use is intertwined with general human
cognitive abililties

• Ability to process language as people do will signal
the arrival of truly intelligent machines

The Imitation Game and the Turing Test

• Party game in which a man (A) and a woman (B) go
into separate rooms, and guests (or an interrogator)
(C) try to tell them apart by writing a series of
questions and reading the typewritten answers sent
back

• Both the man (A) and the woman (B) aim to convince
the guests (C) that they are the other

• Replace A or B by a computer

• If this does not significantly change the interrogator's
success rate, the computer would have to be judged
intelligent

Turing Test

• A person Q is connected to two others, A and B, through
computer networking

• Q interacts verbally (by typing) with A and B

• One of A/B is another human, the other is a computer program

• A and B will both try to convince Q that they are the human

• The test is whether Q can correctly detect which is the computer
program

• If Q cannot, the program has passed the Turing test.

Imitating Communication: Eliza

• Joseph Weizenbaum (1964): fancy linguistic analysis
not needed to give the appearance of intelligent
conversation

• simple pattern matching produces responses to typed input

• people have been fooled by Eliza and similar programs

• program is very simple but surprisingly deceptive.

• Example: dialogue that supposedly took place
between a sales executive who wanted to use the
computer and Eliza

Sample Dialogue
SE: Do you think that I can use the computer this morning?

El: Why do you ask?
SE: I might be able to make some additional telecomp sales.
El: Why aren't you sure?
SE: My prospective customers have never seen a demonstration
of the system.
El: Does this mean very much to you?
SE: Of course it does.
El: You seem very positive about that.
SE: This is ridiculous.
El: What do you mean this is ridiculous.
SE: Is there any reason why I can't use the computer now?
El: Tell me more about your prospective customers
SE: Please dial me up on 491-1850

Eliza fools the SE
• Supposedly, the SE telephoned the operator he

thought he had been talking to, and the exchange went
something like this:

SE: Why are you being so snotty to me?
Op: What do you mean, why am I being so snotty to you?
rest censored...

• Sales Executive (SE) believed he was talking to a
computer operator!

• Did not realise that he was, in fact, on-line to Eliza

• Seems that Eliza could fool people into believing that
they were talking to another person

Imitating Communication: Eliza
• Weizenbaum very carefully choose the domain so

Eliza could demonstrate its power

• Eliza imitates a Rogerian Psychotherapist

‣ clinician draws patients out to get them to talk about
themselves and their problems, without being directive.

• Eliza uses simple pattern matching to carry on limited
form of conversation.

• Seems to “Pass the Turing Test!” (McCorduck, 1979, pp. 225-226)

• Eliza Demo:

http://www.lpa.co.uk/pws_dem4.htm

Eliza: Weizenbaum (1966)
User: You are like my father in some ways.
ELIZA: What resemblance do you see?
User: You are not very aggressive but I think you don’t
want me to notice that.
ELIZA: What makes you think I am not aggressive?
User: You don’t argue with me
ELIZA: Why do you think I don’t argue with you?
User: You are afraid of me
ELIZA: Does it please you to believe I am afraid of you?

How Eliza works
• Simple pattern matching with if-then rules:
‣ stores a set of “key words” and “key phrases”
‣ tries to match these to input sentence
‣ if there’s a match, perform simple transformation on sentence to

provide response

• Example

Rule: IF input = “I am X”
 THEN output = “How long have you been X?”

input: “I am sick”
matches: “I am X” where X = “sick”
response: How long have you been sick?

• Large set of if-then (a.k.a. stimulus-response) rules used

How Eliza works

Set stimulus = input
 output “ ”
Until match is found or no more rules in list

IF stimulus matches if-part of rule
THEN substitute values from stimulus for variables in then-part of rule, and
 set output = filled-in pattern

IF output = “ ”, then output = “Tell me more.”
Print output

Sample Rule: IF input = “I am X”
 THEN output = “How long have you been X?”

Cascade of substitutions
Example:

Input: I am sick of you
Rule: IF input = “I am X”
 THEN output = “How long have you been X?”

 Output: How long have you been sick of you?

But this isn’t what we want!

So, Eliza first changes all instances of 2nd person singular pronouns to 1st
person singular pronouns, and 1st person singular pronouns to 2nd person
singular pronouns, e.g.,

you --> me
my --> your
I’m --> You are

Output: How long have you been sick of me?

You could write Eliza!

Regular Expressions

• Basic regular expression patterns

• Java-based syntax

Reg Exp Match Example Patterns
[mM]other mother or Mother “Mother”

[abc] a or b or c “you are”

[1234567890] any digit “3 times a day”

• Disjunctions [mM]

Regular Expressions

• Ranges [A-Z]

• Negations [^Ss]

RE Match Examples Patterns Matched
[A-Z] an uppercase letter “call me Eliza”
[a-z] a lowercase letter “call me Eliza”
[0-9] a single digit “I’m off at 7”

RE Match Examples Patterns Matched
[^A-Z] not an uppercase letter “You can call me Eliza”
[^Ss] neither s nor S “Say hello Eliza”
[^\.] not a period “Hello.”

Regular Expressions

• Optional characters: ? ,* and +
– ? (0 or 1)
 colou?r " color or colour

– * (0 or more)
 oo*h! " oh! or ooh! or ooooh!

*+

Stephen Cole Kleene

– + (1 or more)

 o+h! " oh! or ooh! or ooooh!

- .any char except newline  
 beg.n " begin or began or begun

Regular Expressions

• Anchors ^ and $
– ^[A-Z] " “France”, “Paris”

– ^[^A-Z] " “¿verdad?”, “really?”

– \.$ " “It’s over.”

– moo$ " “moo”, but not “mood”

• Boundaries \b and \B
– \bon\b " “on my way” “Monday”

– \Bon\b " “automaton”

• Disjunction |
– yours|mine " “it’s either yours or mine”

Regular Expressions

• Replacement
• in emacs
• in javascript
• in python and perl
• …

s/\bI(’m| am)\b /ARE YOU/g

• Syntax varies - the ideas are universal

http://www.inf.ed.ac.uk/teaching/courses/il1/2010/labs/2010-10-28/regexrepl.xml

34

Back to Eliza

User: Men are all alike

ELIZA: IN WHAT WAY

User: They’re always bugging us about something or other

ELIZA: CAN YOU THINK OF A SPECIFIC EXAMPLE?

User: Well, my boyfriend made me come here

ELIZA: YOUR BOYFRIEND MADE YOU COME HERE

User: He says I’m depressed much of the time

ELIZA: DO YOU THINK YOU ARE DEPRESSED MUCH
OF THE TIME

Eliza-style regular expressions

s/.* ARE YOU (SAD|DEPRESSED) .*/I AM SORRY TO HEAR YOU ARE $1/
s/.* ARE YOU (.*) .*/WHY ARE YOU $1/
s/.* all .*/IN WHAT WAY/
s/.* always .*/CAN YOU THINK OF A SPECIFIC EXAMPLE/

Step 1: replace first person with second person references
s/\bI(’m| am)\b /ARE YOU/g
s/\bmy\b /YOUR/g
S/\bmine\b /YOURS/g

Step 2: use additional regular expressions to generate replies

Step 3: use scores to rank possible transformations

Criticisms of Eliza
• Lack of memory: there is no relation between the

current response and any previous stimulus or
response

• The program is inflexible

• There is no knowledge of the structure or meaning of
the input

‣ garbage in, garbage out!

• The program has no world knowledge.

• Program uses the technique of keyphrase-matching:

‣ an example of pattern-matching (very important)

Experiment

• Replacement
• in emacs
• in javascript
• in python and perl
• …

s/\bI(’m| am)\b /ARE YOU/g

• Syntax varies - the ideas are universal

http://www.inf.ed.ac.uk/teaching/courses/il1/2010/labs/2010-10-28/regexrepl.xml

