Finite-State Machines (Automata) lecture 14

- a simple form of computation
- used widely
- one way to find patterns
- one way to describe reactive systems

Formal Definition

Non-deterministic FSM model, M = (Q,s_0,F,Σ,Δ)

- Set of states, Q
- Initial state $s_0 \in Q$
- Accepting states $F \subseteq Q$
- Alphabet Σ
- Transition relation, $\Delta(s, a, t)$ where s, $t \in Q$ and $a \in \Sigma \cup \{\epsilon\}$.

Reactive Systems

- Wait to receive an input
- Respond with:

an output (changing to a new state) or change to new state without output

Response depends on (finite) history

Finite State Machines

- A conceptual tool for modelling reactive systems.
- Not limited to software systems.
- Pre-dates computing science.
- Used to specify required system behaviour in a precise way.
- Then implement as software/hardware (and perhaps verify against FSM).

Formal Definition

FSM transducer model, M, consists of:

- Set of states, Q
- Initial state $s_0 \in Q$
- Alphabets of input and output symbols i/o
- Transition relation, Δ (s, a, t) where s, t \in Q and a \in (In \cup { ϵ }) x (Out \cup { ϵ }).

Parking Meter Example

- $\Sigma = \{m, t, r\}$ money, ticket request, refund request
- $\Lambda = \{p,d\}$ print ticket, <u>d</u>eliver refund

 $Q = \{1, 2\}$

 $T = \{(1,t/\epsilon,1), (1,r/\epsilon,1), (1,m/\epsilon,2), (2,t/p,1), (2,r/d,1), (2,m/\epsilon,2)\}$

This is a transducer FSM because it has some outputs.

FSM Traces

- Finite sequence of alternating state and transition labels, starting and ending with a state: [s₀, i₁/o₁, s₁, i₂/o₂, s₂, ... s_{n-1}, i_n/o_n, s_n]
- s₀ is the initial state.
- Each [s_{i-1}, i_i/o_i, s_i] subsequence must appear as a transition in T

Parking Meter Trace Example

Behaviour of FSM is the set of all possible traces. This is not necessarily a finite set.

Transducer FSM in Logic

trace(
$$S_i$$
, S_f , T, []) $\leftarrow S_i = S_f$

trace(S_i, S_f, T, [I/O|R]) \leftarrow $\exists S_n . \Delta(S_i, I/O, S_n) \land$ $trace(S_n, S_f, T, R)$

[] is the empty sequence [X|R] separates first element, X, from rest of sequence, R.

 $T = \{(1,t/\epsilon,1), (1,r/\epsilon,1), (1,m/\epsilon,2), (2,t/p,1), (2,r/d,1), (2,m/\epsilon,2)\}$ trace(1, 1, T, [m/ε, t/p]) trace(1, 1, T, $[m/\epsilon, m/\epsilon, r/d]$) 'ε])

... etc

Informatics 1 School of Informatics, University of Edinburgh

Deterministic FSMs

A specific class of finite state system:

- deterministic FSMs
- that are acceptors

Determinism

- In a deterministic FSM, all states have no more than one transition leaving the state for each input symbol.
- In a non-deterministic FSM, some states have more than one transition leaving to different successor states for the same input symbol.
- Sometimes non-deterministic FSMs are easier to define.
- ☑ Can always convert from a nondeterministic to a deterministic FSM.

Determinism and Traces

A FSM, M, is deterministic if for every string $x \in \Sigma^*$ there is at most one trace for x in M (where Σ^* is the set of all strings in alphabet of M)

