
Informatics 1
Lecture 10 DPLL & Watched Literals

Michael Fourman

1

Once upon a time …

a Queen ruled a Kingdom. Her capital city was surrounded by seven
mountains. To encourage outdoor exercise she announced a grand

prize.

From time to time, a courtier would visit one of the peaks, and carve
a special sign, never the same peak twice, never more than one

peak a day (and normally none) until every peak had been marked.

The first person to report the completion of all seven peaks would
get the grand prize (a golden egg). To discourage cheating, anyone

falsely reporting before the final peak was signed would be
beheaded.

It is possible, but arduous, to visit all seven peaks in one day. A trip to
the top of any one of the peaks is an easy walk. Explain how two good

friends might plan to win the prize, without too much exertion.
Assume that one, but not both can spend the night on a mountain, if
necessary, but your answer should minimise the number of nights.

Davis Putnam Logemann Loveland (DPLL)

function DPLL(Φ)
 if Φ is a consistent set of literals
 then return true;
 if Φ contains an empty clause
 then return false;
 for every unit clause l in Φ
 Φ ← unit-propagate(l, Φ);
 l ← choose-literal(Φ);
 return DPLL(Φ ∪ {l}) or DPLL(Φ ∪ {not(l)});

5

¬A⋁C

¬B⋁D¬B⋁¬C⋁¬D

¬E⋁B
E⋁B

A⋁EA⋁¬E

A

AB

ABC ABC̅

ABCD ABCD̅

AB ̅

ABC̅ ABC̅̅

ABC̅D
ABC̅D̅

¬A⋁C

ABC̅DE
ABC̅DE ̅ ABC̅D̅E

ABC̅D̅E ̅

¬E⋁B
E⋁B

A̅

A̅XXX

A̅XXXE
A̅XXXE ̅

6

¬A⋁C

¬B⋁D ¬B⋁¬C⋁¬D ¬E⋁B E⋁B

A⋁EA⋁¬E

A

AC

ABC
ABC̅

A̅

Davis Putnam Logemann Loveland (DPLL)

DPLL Φ =
 Φ = {} ||

({} ∉ Φ &&
let y = choose-literal Φ in

DPLL(unit-propagate (Φ ,y))
||
DPLL(unit-propagate (Φ ,¬y))

)

Davis Putnam Logemann Loveland (DPLL)

unit-collapse(Φ, x) =
 { C \ {¬x} | C ∈ Φ ⋀ ¬x ∈ C}

∪
{ C ∈ Φ | ¬x ∉ C ⋀ x ∉ C}

{ {¬A,C}, {¬B,D}, {¬E,B}, {¬E,A}, {A,E}, {E,B},{¬B, ¬C, ¬D} }

{ {¬A,C}, {¬B,D}, {¬E,B}, {¬E,A}, {A,E}, {E,B},{¬B, ¬C, ¬D} }
A

Davis Putnam Logemann Loveland (DPLL)

unit-propagate(Φ, x) =
let Φʹ = unit-collapse(Φ, x) in
if ∃ y. {y} ∈ Φʹ then unit-propagate(Φʹ, y)
 else Φʹ

{ {¬A,C}, {¬B,D}, {¬E,B}, {¬E,A}, {A,E}, {E,B},{¬B, ¬C, ¬D} }

{ {¬A,C}, {¬B,D}, {¬E,B}, {¬E,A}, {A,E}, {E,B},{¬B, ¬C, ¬D} }
A

C
{ {¬A,C}, {¬B,D}, {¬E,B}, {¬E,A}, {A,E}, {E,B},{¬B, ¬C, ¬D} }

B
{ {¬A,C}, {¬B,D}, {¬E,B}, {¬E,A}, {A,E}, {E,B},{¬B, ¬C, ¬D} } { {¬A,C}, {¬B,D}, {¬E,B}, {¬E,A}, {A,E}, {E,B},{¬B, ¬C, ¬D} }

¬B

¬A

…

Davis Putnam Logemann Loveland (DPLL)

DPLL(Φ, V) =
 if V ⊨ Φ return true;
 if {} ∈ Φ return false;
 if V, Φ ⊨ L return DPLL(Φ, V^L)
 L ← choose-literal(Φ)
 return DPLL(Φ, V^L}) || DPLL(Φ, V^¬L);

Naive search

S(Φ, V) =
 ∀ C∈Φ. V ⊭ ¬C &&
 (∀ C∈Φ. V ⊨ C ||
 ∃ L. (S(Φ, V^L) || S(Φ, V^¬L)))

Davis Putnam Logemann Loveland (DPLL)

DPLL(Φ, V) =
 ∀C∈Φ. V ⊭ ¬C &&
 (∀C∈Φ. V ⊨ C ||
 ∃C ∈ Φ, L. V, C ⊨ L && DPLL(Φ, V^L)
 ||
 ∃L. (DPLL(Φ, V^L) || DPLL(Φ, V^¬L)))

Once upon a time …

The friends share a list of mountains they have seen signed.
They each choose an unsigned mountain to watch.

Each day, each friend climbs one of the watched mountains.
If one finds his mountain has been signed she visits other, unwatched

and previously unsigned mountains, until she finds one that is still
unsigned, which she then watches.

As soon as there is only one unsigned mountain left to watch, they take
turns spending the night on that mountain until it is signed and they

claim the prize.

As long as there are two or more unsigned mountains, they are watching
two of them. As soon as the penultimate mountain is signed they can

take turns keeping vigil on the final peak.

1. V ⊭ ¬C unless V contradicts every literal in C
2. V ⊨ C iff V establishes some literal in C
3. V, C ⊨ L iff V contradicts every literal but L in C

As V gets longer it establishes and contradicts more literals.
We watch literals, as long as there are two uncontradicted

literals we watch two.

If one of our watched literals is contradicted, we try to find
another . If we fail, then 3 is true; we claim our prize, and try to

establish L; other clauses may try to establish other literals,
at which point we may discover a contradiction, or continue.

If the search backtracks, V gets shorter, both of our two
watched literals are again uncontradicted.

