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sets and subsets
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Uuniverse 
subsets

a set

A ✓ U i↵ for all x 2 A. x 2 U

A,B ✓ U



comprehension
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For any set X

and any property P

{x 2 X | P (x)} is a set,

whose members are those x 2 X such that P (x).

y 2 {x 2 X | P (x)} i↵ y 2 X and P (y)
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x 2 A [B i↵ x 2 A or x 2 B (union)

x 2 A \B i↵ x 2 A and x 2 B (intersection)

for x 2 U

x 2 U \A i↵ x 62 A (complement)

Operations on Sets



Singletons
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For any X

{X} is a set, whose only member is X.

We can take unions of singletons to 
construct any non-empty finite set.



products : sets of pairs
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A⇥B = {hx, yi | x 2 A and y 2 B}
|A⇥B| = |A|⇥ |B|

B
=

sh
ap

es
A = colours
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A⇥B = {hx, yi | x 2 A and y 2 B}
|A⇥B| = |A|⇥ |B|

B
=

sh
ap

es

A = colours

hred, stari



sets and properties
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Uuniverse 
true-false  

properties

a set

JP K = {x 2 U | P (x)}
every property corresponds to a subset

P,Q : U ) {>,?}



subsets and properties
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JP K = {x 2 U | P (x)}
every property corresponds to a subset

every subset corresponds to a property

P (x) i↵ x 2 JP K



Powerset
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the subsets of a set form a set

if     has     elements 
how many subsets does it have? 

how big is      ?

X n

}X

A 2 }X i↵ A ✓ X



Powerset
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if     has     elements 
how many subsets does it have? 

how big is      ?

X n

}X

if |X| = n

then |}X| = 2n



example: traffic lights
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if we have a set of three lights, red, amber, green 
then a state of the lights  

is a subset of the set {red, amber, green}  
whose members are those lights that are on

there are 8 possible states



example: traffic lights
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a state of the signal  
is a subset of the set

there are 3 natural properties of this set of 8 states

L = {red, amber, green}

for S ✓ L

R(S) i↵ red 2 S

A(S) i↵ amber 2 S

G(S) i↵ green 2 S
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Venn (1834–1923)
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red red

small green

disc amber

properties are 
extensional
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As with all sciences, informatics is concerned 
with the mathematical modelling of the real world.

Most branches of engineering use a continuum model. 
They neglect the fact that real substances are 

composed of discrete molecules and model matter from 
the start as a smoothed-out continuum.

Digital systems take an opposite approach. They also 
neglect the complexity of reality – but they are 

engineered so that we can use discrete models to 
design and reason about their behaviour.

We build these models using logic and set theory. 
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How can we  
characterise 
these three states?
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Venn (1834–1923)

Traffic  
Light
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G� (R _A)
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✔

✔

✔

✔

𐄂

𐄂

𐄂

𐄂

A truth table represents sets of states  
as a functions from states to truth values



{x | R(x)}
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R A G
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1



{x | G(x)}
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R A G
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1



{x | A(x)}
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R A G
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1



{x | G(x)�R(x)}
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xor

R A G G ⊕ R
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 0
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xor

R A G G ⊕ R (G ⊕ R) ⊕  A
0 0 0 0 0
0 0 1 1 1
0 1 0 0 1
0 1 1 1 0
1 0 0 1 1
1 0 1 0 0
1 1 0 1 0
1 1 1 0 1

{x | (G(x)�R(x))�A(x)}



??
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�
x | G(x)� (R(x)�A(x))

 xor



✔ ✔ ✔ ✔𐄂 𐄂𐄂𐄂
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�
x | G(x)� (R(x)�A(x))

 xor



{x | G(x)�R(x)�A(x)}
✔ ✔ ✔ ✔𐄂 𐄂𐄂𐄂
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xor



{x | G(x)�R(x)�A(x)}
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xor

R A G R ⊕ A R ⊕ A ⊕ G
0 0 0 0 0
0 0 1 0 1
0 1 0 1 1
0 1 1 1 0
1 0 0 1 1
1 0 1 1 0
1 1 0 0 0
1 1 1 0 1



{x | G(x) $ R(x)}
✔✔ ✔ ✔𐄂 𐄂 𐄂𐄂
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iff



??
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iff�
x | G(x) $ (R(x) $ A(x))

 



{x | G(x) $ R(x) $ A(x)}
✔ ✔ ✔ ✔𐄂 𐄂𐄂𐄂

33

iff

G(x) $R(x) $ A(x)

⌘
G(x)�R(x)�A(x)
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