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Informatics 1 
Computation and Logic

Lecture 17 
The Big Ideas



A formal language, without the vagueness 
and ambiguity of natural language

Syntax: 
expressions are built up from atomic 
propositions using logical connectives 

 ∧∨¬→ 
expressions are trees, with atomic 

propositions as leaf nodes and other nodes 
labelled with connectives

→

A

¬∧

B

A ∧ B → ¬C
C

precedence 
¬ 
∧ 
∨ 
→ 
⬌



A formal language, without the vagueness 
and ambiguity of natural language

Semantics: 
the truth value expressions is built up 
“compositionally” from the truth values of its 
atomic propositions using logical operators

→

A

¬∧

B

A ∧ B → ¬C
C

∧ →A ¬A

A ∧ B → ¬C
A ∧ B → ¬C



a deduction  
rule 

Formal Inference 

proofs are built from assumptions using sound rules 
proofs are trees, with assumptions as leaves, and 
other nodes labelled with instances of rules

A→B   ¬B
¬A

an entailment 
A→B, ¬B ⊢ ¬A



cut rule  
a rule for composing proofs 

A→B, B→C, ¬C ⊢ ¬A

a proof 

Formal Inference 

proofs are built from assumptions using sound rules 
proofs are trees, with assumptions as leaves, and 
other nodes labelled with instances of rules

A→B   ¬B
¬A

A→B, ¬B ⊢ ¬A
B→C   ¬C

B→C, ¬C ⊢ ¬B

?
(A→B)→(A→C) ⊢ A → (B→C)



A→B, ¬B ⊢ ¬A       B→C, ¬C ⊢ ¬B 
  

A→B, B→C, ¬C ⊢ ¬A 

A→B, B→C ⊢ ¬C → ¬A

a proof 

Natural Deduction 

one natural way to prove A→B is to assume A and prove B

A→B   ¬B
¬A

B→C   ¬C

a proof? 

A→B   ¬B
¬C →¬A

B→C   ¬C

→ introduction  
a rule of inference 

Γ, X ⊢ Y 
Γ ⊢ X→Y



Natural Deduction 
one natural way to prove X→Y is to assume X and prove Y 
and if we can prove X→Y then from X we can infer Y

A,B ⊢ B    (A→B)→(A→C) ⊢ (A→B)→(A→C)                     .                                                         
B ⊢ A→B   A→B, (A→B)→(A→C) ⊢ A→C       A→C ⊢ A→C 

B, (A→B)→(A→C) ⊢ A→C                              A→C, A ⊢C 
(A→B)→(A→C), A, B ⊢ C 
(A→B)→(A→C), A ⊢ B→C 

(A→B)→(A→C) ⊢ A → (B→C)

→ introduction & elimination 
a 2-way rule of inference 

Γ, X ⊢ Y 
Γ ⊢ X→Y

The proofs may be natural, but sometimes they are hard to find!



Gentzen’s idea

Instead of just entailments,  Γ ⊢ X   
(where X is an expression and Γ is a finite set of expressions) 

allow sequents, Γ ⊢ Δ 
(where both Γ and Δ are finite sets of expressions) 

Of course, every entailment ‘is’ a sequent 
(where Δ is a singleton) 

but the sequent calculus is much  
simpler than natural deduction

�, A ` �, A
(I)

�, A,B ` �

�, A ^B ` �
(^L) � ` A,B,�

� ` A _B,�
(_R)

�, A ` � �, B ` �

�, A _B ` �
(_L) � ` A,� � ` B,�

� ` A ^B,�
(^R)

� ` A,� �, B ` �

�, A ! B ` �
(! L)

�, A ` B,�

� ` A ! B,�
(! R)

� ` A,�

�,¬A ` �
(¬L) �, A ` �

� ` ¬A,�
(¬R)



The diagram shows a river, a road, an 
island, and two bridges that can open to 
let ships pass. 
Ships can pass from West to East  only if at 
least one of the bridges is open. 
Cars can pass from North to South only if 
both bridges are closed.

N

S

W E

How does this relate to 
de Morgan’s Law?

A

B



Draw a graph showing  
the paths across the 
bridges from  
North to South.

N

S

In each case, the bridges 
correspond to edges of 

the graph.

Draw a graph showing  
the paths under the 

bridges from West to 
East.

What is the logical 
relationship between the 

two graphs?
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We can express many combinatorial problems in propositional 
logic 

(eg Sudoku, but also more practical problems, such as circuit design) 

We can use resolution to check whether a set of clauses is 
consistent. 

If we can derive the empty clause the set is inconsistent, and 
we can invert the proof to produce a refutation tree 

If we cannot derive the empty clause we can construct a 
satisfying valuation from the failed attempt to prove a 

contradiction  

Generating all the resolvants takes space and time



Davis Putnam

Take a collection C of clauses. 

For each propositional letter, A 
 For each pair (X, Y) | X∊C ⋀ Y∊C ⋀ A∊X ⋀ ¬A∊Y 
  if R(X, Y, A) = {} return UNSAT 
         if  R(X, Y, A) is consistent C := C ∪ { R(X, Y) } 
return SAT 

Where R(X, Y, A) = X ∪ Y \ { A, ¬A }

Heuristic: start with variables that occur seldom.



Naïve search
function SAT(Φ,V) 
   Φ|V = {} 
   || 
      {} ∉ Φ|V  
      && 
      let A = chooseLiteral (Φ,V) 
      in  
          SAT (Φ,V ^ A)  
          ||  
          SAT (Φ,V ^ ¬A)

Φ is a set of clauses

V is a partial valuation  
(a consistent set of literals) 

V^A = V∪{A}

Φ | V is the result of  
simplifying Φ using V: 
For each literal L ∈ V 

• remove clauses  
containing L 
• delete ¬L from  
remaining clauses

chooseLiteral(Φ,V) returns a literal occurring in Φ | V  



We can express many combinatorial problems in propositional 
logic 

(eg Sudoku, but also more practical problems) 

We can search for solutions to a set of constraints expressed in 
propositional logic 

We convert the problem to clausal form 
and check partial valuations V against our constraints 

if V contradicts any clauses our search must backtrack. 

Checking these potential solutions costs time and space 

We can narrow the search by unit propagation: 
identifying literals whose siblings are all falsified,  

and making them true 

Keeping track of unit literals takes time



3

5

Boolean Network Model

A Boolean Network Model:
Nodes represent transcription factors

Edges represent regulatory input

Boolean gates (input functions) represent gene expression

fB(A,B,C)=A AND C

fC(A,B,C)=NOT A OR B)fA(A,B,C)=A OR C

Gene A

A OR C

Gene B

If A AND C

Gene C

(NOT A) OR B

TFC

TFC

TFA TFB

TFA

A

B

C

TFA

6

Dynamics

  Network State: X=(A,B,C…) is a Boolean vector

  State evolution: X(t+1)=f(X(t))=(fA(X(t)),fB(X(t)), ….)
 E.g., X(t+1)=(A OR C, A AND C, (NOT A) OR B)

 (0,1,1)=>(1,0,1)

 This is discrete time synchronous dynamics
 State transitions occur through concurrent gates firings
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Representation of events in nerve nets and finite automata 1951

Regular expressions and finite automata

 S. C. Kleene 1909–1994 

https://www.rand.org/content/dam/rand/pubs/research_memoranda/2008/RM704.pdf



Finite State Machine concepts proved valuable in language 
parsing (compilers) and sequential circuit design

s;0

t;1

Edward F. Moore 1925-2003

a

b

s

t

a/0

b/1

Moore machine Mealy machine

Gedanken - Experiments on Sequential Machines, 1956

Moore is less

A Method for 
Synthesizing Sequential Circuits

George H. Mealy 1927-2010

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6771467http://people.mokk.bme.hu/~kornai/termeszetes/moore_1956.pdf





Finite Automata and their Decision Problems 1959

Dana S. Scott 1934-…

Michael O. Rabin 1931-…

http://www.cse.chalmers.se/~coquand/AUTOMATA/rs.pdf

A nondeterministic automaton has, at each 
stage of its operation, several choices of 
possible actions. This versatility enables us to 
construct very powerful automata using only a 
small number of internal states.  

Nondeterministic automata, however, turn out to 
be equivalent to the usual automata. This fact is 
utilized for showing quickly that certain sets are 
definable by automata. 



Parsers are responsible for 
translating unstructured, 
untrusted, opaque data to a 
structured, implicitly trusted, 
semantically meaningful format 
suitable for computing on. 
Parsers, therefore, are the 
components that facilitate the 
separation of data from 
computation and, hence, exist in 
nearly every conceivable useful 
computer system

Parsers must be correct, so that 
only valid input is blessed with 
trust; and they must be efficient 
so that enormous documents 
and torrential datastreams don’t 
bring systems to their knees

Finite State Machine Parsing for Internet Protocols: Faster Than You Think (2014)



Abstract In this chapter, we introduce an important 
building block for efficient custom hardware design: the 
Finite State Machine with Datapath (FSMD). An FSMD 
combines a controller, modeled as a finite state machine 
(FSM) and a datapath. The datapath receives commands 
from the controller and performs operations as a result of 
executing those commands. The controller uses the 
results of data path operations to make decisions and to 
steer control flow. The FSMD model will be used 
throughout the remainder of the book as the reference 
model for the ‘hardware’ part of hardware/software 
codesign. 

A Practical Introduction to Hardware/Software Codesign,  
Chapter 4. Finite State Machine with Datapath (2010)



0 1 1 0 0 1 1 1 0 0 0 1 0

+1 read once only

FSM
Moore



0 1 1 0 0 1 1 1 0 0 0 1 0

+1
read once only

FSM
Mealy 

transducer

0 0 1 1 1 0 0 0 1 0

write only
+1



1 1 0 0 1 1 1 0 0 0 1 0

-1,0,+1 read/write

Turing Machine
Turing



Universal Turing Machine 
1937

Alan Turing 1912-1954


