
Informatics 1: Computation and Logic by Michael Paul Fourman is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Creative Commons License

Informatics 1
Computation and Logic

Lecture 17
The Big Ideas

A formal language, without the vagueness
and ambiguity of natural language

Syntax:
expressions are built up from atomic
propositions using logical connectives

 ∧∨¬→
expressions are trees, with atomic

propositions as leaf nodes and other nodes
labelled with connectives

→

A

¬∧

B

A ∧ B → ¬C
C

precedence
¬
∧
∨
→
⬌

A formal language, without the vagueness
and ambiguity of natural language

Semantics:
the truth value expressions is built up
“compositionally” from the truth values of its
atomic propositions using logical operators

→

A

¬∧

B

A ∧ B → ¬C
C

∧ →A ¬A

A ∧ B → ¬C
A ∧ B → ¬C

a deduction
rule

Formal Inference

proofs are built from assumptions using sound rules
proofs are trees, with assumptions as leaves, and
other nodes labelled with instances of rules

A→B ¬B
¬A

an entailment
A→B, ¬B ⊢ ¬A

cut rule
a rule for composing proofs

A→B, B→C, ¬C ⊢ ¬A

a proof

Formal Inference

proofs are built from assumptions using sound rules
proofs are trees, with assumptions as leaves, and
other nodes labelled with instances of rules

A→B ¬B
¬A

A→B, ¬B ⊢ ¬A
B→C ¬C

B→C, ¬C ⊢ ¬B

?
(A→B)→(A→C) ⊢ A → (B→C)

A→B, ¬B ⊢ ¬A B→C, ¬C ⊢ ¬B

A→B, B→C, ¬C ⊢ ¬A

A→B, B→C ⊢ ¬C → ¬A

a proof

Natural Deduction

one natural way to prove A→B is to assume A and prove B

A→B ¬B
¬A

B→C ¬C

a proof?

A→B ¬B
¬C →¬A

B→C ¬C

→ introduction
a rule of inference

Γ, X ⊢ Y
Γ ⊢ X→Y

Natural Deduction
one natural way to prove X→Y is to assume X and prove Y
and if we can prove X→Y then from X we can infer Y

A,B ⊢ B (A→B)→(A→C) ⊢ (A→B)→(A→C) .
B ⊢ A→B A→B, (A→B)→(A→C) ⊢ A→C A→C ⊢ A→C

B, (A→B)→(A→C) ⊢ A→C A→C, A ⊢C
(A→B)→(A→C), A, B ⊢ C
(A→B)→(A→C), A ⊢ B→C

(A→B)→(A→C) ⊢ A → (B→C)

→ introduction & elimination
a 2-way rule of inference

Γ, X ⊢ Y
Γ ⊢ X→Y

The proofs may be natural, but sometimes they are hard to find!

Gentzen’s idea

Instead of just entailments, Γ ⊢ X
(where X is an expression and Γ is a finite set of expressions)

allow sequents, Γ ⊢ Δ
(where both Γ and Δ are finite sets of expressions)

Of course, every entailment ‘is’ a sequent
(where Δ is a singleton)

but the sequent calculus is much
simpler than natural deduction

�, A ` �, A
(I)

�, A,B ` �

�, A ^B ` �
(^L) � ` A,B,�

� ` A _B,�
(_R)

�, A ` � �, B ` �

�, A _B ` �
(_L) � ` A,� � ` B,�

� ` A ^B,�
(^R)

� ` A,� �, B ` �

�, A ! B ` �
(! L)

�, A ` B,�

� ` A ! B,�
(! R)

� ` A,�

�,¬A ` �
(¬L) �, A ` �

� ` ¬A,�
(¬R)

The diagram shows a river, a road, an
island, and two bridges that can open to
let ships pass.
Ships can pass from West to East only if at
least one of the bridges is open.
Cars can pass from North to South only if
both bridges are closed.

N

S

W E

How does this relate to
de Morgan’s Law?

A

B

Draw a graph showing
the paths across the
bridges from
North to South.

N

S

In each case, the bridges
correspond to edges of

the graph.

Draw a graph showing
the paths under the

bridges from West to
East.

What is the logical
relationship between the

two graphs?

E
W

A B

C D
F

G

H

J

K
L

We can express many combinatorial problems in propositional
logic

(eg Sudoku, but also more practical problems, such as circuit design)

We can use resolution to check whether a set of clauses is
consistent.

If we can derive the empty clause the set is inconsistent, and
we can invert the proof to produce a refutation tree

If we cannot derive the empty clause we can construct a
satisfying valuation from the failed attempt to prove a

contradiction

Generating all the resolvants takes space and time

Davis Putnam

Take a collection C of clauses.

For each propositional letter, A
 For each pair (X, Y) | X∊C ⋀ Y∊C ⋀ A∊X ⋀ ¬A∊Y
 if R(X, Y, A) = {} return UNSAT
 if R(X, Y, A) is consistent C := C ∪ { R(X, Y) }
return SAT

Where R(X, Y, A) = X ∪ Y \ { A, ¬A }

Heuristic: start with variables that occur seldom.

Naïve search
function SAT(Φ,V)
 Φ|V = {}
 ||
 {} ∉ Φ|V
 &&
 let A = chooseLiteral (Φ,V)
 in
 SAT (Φ,V ^ A)
 ||
 SAT (Φ,V ^ ¬A)

Φ is a set of clauses

V is a partial valuation
(a consistent set of literals)

V^A = V∪{A}

Φ | V is the result of
simplifying Φ using V:
For each literal L ∈ V

• remove clauses
containing L
• delete ¬L from
remaining clauses

chooseLiteral(Φ,V) returns a literal occurring in Φ | V

We can express many combinatorial problems in propositional
logic

(eg Sudoku, but also more practical problems)

We can search for solutions to a set of constraints expressed in
propositional logic

We convert the problem to clausal form
and check partial valuations V against our constraints

if V contradicts any clauses our search must backtrack.

Checking these potential solutions costs time and space

We can narrow the search by unit propagation:
identifying literals whose siblings are all falsified,

and making them true

Keeping track of unit literals takes time

3

5

Boolean Network Model

A Boolean Network Model:
Nodes represent transcription factors

Edges represent regulatory input

Boolean gates (input functions) represent gene expression

fB(A,B,C)=A AND C

fC(A,B,C)=NOT A OR B)fA(A,B,C)=A OR C

Gene A

A OR C

Gene B

If A AND C

Gene C

(NOT A) OR B

TFC

TFC

TFA TFB

TFA

A

B

C

TFA

6

Dynamics

 Network State: X=(A,B,C…) is a Boolean vector

 State evolution: X(t+1)=f(X(t))=(fA(X(t)),fB(X(t)), ….)
 E.g., X(t+1)=(A OR C, A AND C, (NOT A) OR B)

 (0,1,1)=>(1,0,1)

 This is discrete time synchronous dynamics
 State transitions occur through concurrent gates firings

000

001

010

011

100

101

110

111

001

101

001

101

100

110

101

111

X(t+1) X(t)

Attractors

Cycle

fB(A,B,C)=A AND C

fC(A,B,C)=(NOT A) OR B

fA(A,B,C)=A OR C

A

B

C

000

011

001

101

010

111

110

100

State-space dynamics

3

5

Boolean Network Model

A Boolean Network Model:
Nodes represent transcription factors

Edges represent regulatory input

Boolean gates (input functions) represent gene expression

fB(A,B,C)=A AND C

fC(A,B,C)=NOT A OR B)fA(A,B,C)=A OR C

Gene A

A OR C

Gene B

If A AND C

Gene C

(NOT A) OR B

TFC

TFC

TFA TFB

TFA

A

B

C

TFA

6

Dynamics

 Network State: X=(A,B,C…) is a Boolean vector

 State evolution: X(t+1)=f(X(t))=(fA(X(t)),fB(X(t)), ….)
 E.g., X(t+1)=(A OR C, A AND C, (NOT A) OR B)

 (0,1,1)=>(1,0,1)

 This is discrete time synchronous dynamics
 State transitions occur through concurrent gates firings

000

001

010

011

100

101

110

111

001

101

001

101

100

110

101

111

X(t+1) X(t)

Attractors

Cycle

fB(A,B,C)=A AND C

fC(A,B,C)=(NOT A) OR B

fA(A,B,C)=A OR C

A

B

C

000

011

001

101

010

111

110

100

State-space dynamics

Representation of events in nerve nets and finite automata 1951

Regular expressions and finite automata

 S. C. Kleene 1909–1994

https://www.rand.org/content/dam/rand/pubs/research_memoranda/2008/RM704.pdf

Finite State Machine concepts proved valuable in language
parsing (compilers) and sequential circuit design

s;0

t;1

Edward F. Moore 1925-2003

a

b

s

t

a/0

b/1

Moore machine Mealy machine

Gedanken - Experiments on Sequential Machines, 1956

Moore is less

A Method for
Synthesizing Sequential Circuits

George H. Mealy 1927-2010

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6771467http://people.mokk.bme.hu/~kornai/termeszetes/moore_1956.pdf

Finite Automata and their Decision Problems 1959

Dana S. Scott 1934-…

Michael O. Rabin 1931-…

http://www.cse.chalmers.se/~coquand/AUTOMATA/rs.pdf

A nondeterministic automaton has, at each
stage of its operation, several choices of
possible actions. This versatility enables us to
construct very powerful automata using only a
small number of internal states.

Nondeterministic automata, however, turn out to
be equivalent to the usual automata. This fact is
utilized for showing quickly that certain sets are
definable by automata.

Parsers are responsible for
translating unstructured,
untrusted, opaque data to a
structured, implicitly trusted,
semantically meaningful format
suitable for computing on.
Parsers, therefore, are the
components that facilitate the
separation of data from
computation and, hence, exist in
nearly every conceivable useful
computer system

Parsers must be correct, so that
only valid input is blessed with
trust; and they must be efficient
so that enormous documents
and torrential datastreams don’t
bring systems to their knees

Finite State Machine Parsing for Internet Protocols: Faster Than You Think (2014)

Abstract In this chapter, we introduce an important
building block for efficient custom hardware design: the
Finite State Machine with Datapath (FSMD). An FSMD
combines a controller, modeled as a finite state machine
(FSM) and a datapath. The datapath receives commands
from the controller and performs operations as a result of
executing those commands. The controller uses the
results of data path operations to make decisions and to
steer control flow. The FSMD model will be used
throughout the remainder of the book as the reference
model for the ‘hardware’ part of hardware/software
codesign.

A Practical Introduction to Hardware/Software Codesign,
Chapter 4. Finite State Machine with Datapath (2010)

0 1 1 0 0 1 1 1 0 0 0 1 0

+1 read once only

FSM
Moore

0 1 1 0 0 1 1 1 0 0 0 1 0

+1
read once only

FSM
Mealy

transducer

0 0 1 1 1 0 0 0 1 0

write only
+1

1 1 0 0 1 1 1 0 0 0 1 0

-1,0,+1 read/write

Turing Machine
Turing

Universal Turing Machine
1937

Alan Turing 1912-1954

