https://app-ca.tophat.com/e/835603

NFA and regex

- the Boolean algebra of languages
- regular expressions

KISS – DFA

Deterministic Finite Automaton

Exactly one start state, and from each state, **q**, for each token, **t**, there is exactly one transition from **s** with label **t**

Two examples

The complement of a regular language is regular

L_0 : even numbers = 0 mod 2

 L_1 : odd numbers = 1 mod 2

Informatics 1 School of Informatics, University of Edinburgh

Three examples

Which
binary
numbers
are
accepted?

The complement of a regular language is regular

If $A \subseteq \Sigma^*$ is recognised by M then $\overline{\mathbf{A}} = \Sigma^* \setminus \mathbf{A}$ is recognised by where $\overline{\mathbf{M}}$ and \mathbf{M} are identical except that the accepting states of $\overline{\mathbf{M}}$ are the nonaccepting states of M and vice-versa

divisible by three

not divisible by three

Informatics 1 School of Informatics, University of Edinburgh

divisible by 6 ≡ divisible by 2 and divisible by 3

Run both machines in parallel?

Build one machine that simulates two machines running in parallel!

Keep track of the state of each machine.

Informatics 1 School of Informatics, University of Edinburgh

intersection of languages

run the two machines in parallel when a string is in both languages, both are in an accepting state

intersection of languages

run the two machines in parallel when a string is in both languages, both are in an accepting state

run two machines in synchrony

The regular languages $A \subseteq \Sigma^*$ form a Boolean Algebra

• Since they are closed under intersection and complement.

Are all languages $A \subseteq \Sigma^*$ regular?

- A finite machine can only do so much or rather, so little.
 - Consider the language with two symbols $\Sigma = \{0, 1\}$, consisting of the all strings
 - that contain equal numbers of zeros and ones.
 - How can we show that this language is not regular?

Consider the language with two symbols $\Sigma = \{0,1\}$, consisting of the all strings that contain equal numbers of zeros and ones.

Suppose we have a DFA that recognises this language.

Let s_n be the state the machine reaches after an input of n zeros.

If the machine is in state s_n and we give it an input of n ones it will be in an accepting state.

A = strings that contain equal numbers of zeros and ones.

We have a DFA that recognises this language.

 s_n is the state the machine after an input of n zeros.

If the machine is in state s_n and we give it an input of n ones it will be in an accepting state.

If $n \neq m$ what can we say about s_n and s_m ?

A = strings that contain equal numbers of zeros and ones. We have a DFA that recognises this language.

 s_n is the state the machine after an input of n zeros.

If the machine is in state s_n (after an input of n zeros), and we give it an input of m ones it will be in an accepting state iff m = n.

Therefore, if $n \neq m$ then $s_n \neq s_m$ (why?)

So our machine must have infinitely many states!!

An FSM with n states cannot count beyond n-1.

What kind of answer can we give to a question like this?

If we have a machine then the language it recognises is regular.

For some languages, L, e.g. our #0s = #1s example, we can argue that no FSM can recognise L. But that is not a general argument.

> Instead of finding a property, to characterise the regular languages, we will find **a set of rules that generate** the set of regular languages.

We give a set of rules,

and show that they generate all regular languages.

First we work with general NFA to show that the rules are **sound** – any language generated by the rules is regular.

Then we show that for any NFA, **M**, there is a DFA, $\mathcal{P}(M)$, that recognises the same language. So, any language generated by the rules is recognised by some DFA.

Then we show that the rules are **complete** – any regular language is generated by the rules.

finite state spaghetti

A natural language is a set of finite sequences of words.

A formal language is a set of finite sequences of symbols.

A formal language is **regular** iff it is the language recognised by some Finite State Machine.

KISS – start simple

NFA any number of start states and accepting states

Any NFA with no accepting states, e.g. the NFA with no states, recognises the empty language $\emptyset = \{\}$.

The NFA with one state - starting and accepting, and no transitions \sum recognises the empty string { ϵ }. The NFA with two states and one transition, start to stop \sum^{a} recognises {"a"}

$KISS\,$ – the basic regular languages

The following languages are regular

- The empty language $\emptyset = \{\}$
- The language that includes only the empty string $\{ \epsilon \}$.
- The language that includes only the one-letter string {"a"}

NFA any number of start states and accepting states

alternation R|S

rules for regular languages

The following languages are regular

- The empty language $\emptyset = \{\}$
- The language that includes only the empty string $\{ \boldsymbol{\epsilon} \}$.
- The language that includes only the one-letter string {"a"}
 If R and S are regular so are
- R | S = R u S
- $RS = \{ rs | r \in R and s \in S \}$
- R* generated by rules
 - **ε** ∈ R*
 - if $x \in R^*$ and $r \in R$ then $xr \in R^*$

patterns for regular languages

regular expressions for sets of strings

- "" empty language $\emptyset = \{\}$
- $\boldsymbol{\epsilon}$ empty string { $\boldsymbol{\epsilon}$ }.
- **a** one-letter string {"a"}
- R | S union R u S
- **RS** concatenation $\{ rs | r \in R and s \in S \}$
- **R*** iteration

precedence:

$$\mathsf{R}|\mathsf{S}\mathsf{T}^*=\mathsf{R}|(\mathsf{S}(\mathsf{T}^*))$$

A Decimal Number

 $((+|-)\d|\d)\d^{*}(\epsilon|_\d^{*}\d)$ where \d is (0|1|2|3|4|5|6|7|8|9)

The following equations hold for any sets of strings **R,S,T**

- {} | S =
- {} S =
- ε S =
- **ɛ*** =
- {}* =
- R (S | T) =
- S R | T R =
- S* S | ε =

The following equations hold for any sets of strings R,S,T

- {} | $S = {}|S = S$
- {} S = S {} = {}
- $\varepsilon S = S \varepsilon = S$
- $\epsilon^* = \epsilon$
- $\{\}^* = \{\}$
- R(S|T) = RS|RT
- (S | T) R = S R | T R
- $S^* = S^* S | \epsilon = S S^* | \epsilon$