Finite-State Machines (Automata) lecture 12

- a simple form of computation
- used widely
- one way to find patterns

A B C D A Next

Application Fields

Industry

• real-time control, vending machines, cash dispensers, etc.

Electronic circuits

- data path / control path
- memory / cache handling
- protocols, USB, etc.

Communication protocols

- initiation and maintenance of communication links
- error detection and handling, packet retransmission

Language analysis

- natural languages
- programming languages
- search engines

Finite State Machines

- A conceptual tool for modelling reactive systems.
- Not limited to software systems.
- Used to specify required system behaviour in a precise way.
- Then implement as software/hardware (and perhaps verify behaviour against FSM).
- Finite state machines can also be viewed as rules for generating sets of strings (= sets of finite sequences of symbols)

Each path from start to end, with a choice of

one of the labels for each edge traversal, gives a decimal number.

$$d = \{"0", "1", "2", "3", "4", "5", "6", "7", "8", "9"\}$$

+ | - = { "+", "-" } $\epsilon = ""$. = "."

This gives us a new way of defining sets by rules.

A whole number is a digit followed by any number of digits, or a sign followed by a digit followed by any number of digits This gives us a new way of defining sets by rules.

A whole number is a digit followed by any number of digits, **or** a sign followed by a digit followed by any number of digits.

A number is a whole number **or** a whole number followed by a decimal point followed by a digit followed by any number of digits

finite state machines

A labelled directed graph nodes ______ edges _____ with a set of start nodes O and a set of end nodes O Each edge is labelled with

a set of strings

finite state machines

A labelled directed graph nodes edges with a set of start nodes and a set of end nodes Each edge is labelled with a set of strings

Each path from a start node to an end node, with a choice of one of the labels for each edge traversal, gives, by concatenation, a string.

The language defined by the machine is the set of all such strings

The language defined by this machine is the set of all decimal numerals

finite state machines

What happens when we link two machines together?

sequence RS

$RS = \{ r + s \mid r \in R \land s \in S \}$

alternation R | S

$\mathsf{R} \mathsf{I} \mathsf{S} = \mathsf{R} \cup \mathsf{S}$

iteration R*

R

3

3

finite state spaghetti

A language is a set of finite sequences of words.

A language is a set of finite sequences of symbols.

A language is **regular** iff it is the language recognised by some Finite State Machine.

each transition is labelled with a finite sequence of tokens, the tokens, depend on the application, they may be letters, symbols, words, actions, ...

Normally we only use sequences of length 0 or 1 as labels. Then we write **a** for **<a>** and ϵ for **<>**

We generate strings of tokens by tracing a path from a start state to an accepting state.

Which strings are accepted by this automaton?

Normally we only use sequences of length 0 or 1 as labels. Then we write **a** for **<a>** and ϵ for **<>**

Strings that begin with b and are of even length **or** begin with a and are of odd length

This machine is non-deterministic some strings have more than one trace some strings have no traces

Which of these strings are accepted? abba abab baba aba baba bab ab ab ba a b

This machine is non-deterministic some strings have more than one trace some strings have no traces

Which of these strings are accepted? abba abab **baba aba** bab ab **ba a** b

This machine is non-deterministic some strings have more than one trace some strings have no traces

Which of these strings are accepted? abba abab **baba aba** bab ab baba aba

aεL baεL

 $x \in L \rightarrow x$ ba $\in L$

KISS – DFA

Deterministic Finite Automaton

Exactly one start state, and from each state, **q**, for each token, **t**, there is exactly one transition from **s** with label **t**

This machine has four states, $Q = \{ s0, s1, s2, s3 \}$ Its alphabet has three symbols $\Sigma = \{0, 1, 2\}$ For each (state, symbol) pair, (q,s) there is exactly one transition from q with label s

This means that **q**' is **determined** by **(q,s)**

For each

(state, symbol) pair, **(q,s)** there is **exactly one** transition from **q** with label **s**

 $q \xrightarrow{S} q'$

This means that **q**' is **determined** by **(q,s)**

It has only one start state, this means that any input string determines a sequence of states.

For each

(state, symbol) pair, **(q,s)** there is **exactly one** transition from **q** with label **s**

q' is determined by (q,s) It has only one start state Every DFA has a next-state function q' = F(q,s)

This is a deterministic finitestate automaton, DFA

DFA C NFA

A DFA has only one start state For each (state, symbol) pair, (q,s) there is exactly one transition from q with label s q' is determined by q and s Every DFA has a next-state function q' = F(q,s)any input string determines a sequence of states.

We will focus now on DFA and return later to NFA.

Then we will show that for any NFA there is a DFA that defines the same language.

Every DFA has a next-state function q' = F(q,s)

Since we have finitely many symbols and states This can be given by a table

This is a deterministic finitestate automaton, DFA

Every DFA has a next-state function q' = F(q,s)

Since we have finitely many symbols and states This can be given by a **next-state table**

q\s	0	1	2
s0	s0	s1	s2
s1	s3	sO	s1
s2	s2	s3	s0
s3	s1	s2	s3

Every DFA has a next-state function q' = F(q,s)

q

We can also represent the transitions by a relation. Which symbol(s) take us from state **q** to state **r** ?

 \mathbf{q}'

q\r	s0	s1	s2	s 3
s0	0	1	2	
s1				
s 2				
s 3		0	1	

This is a deterministic finitestate automaton, DFA

Every DFA has a next-state function q' = F(q,s)

q

We can also represent the transitions by a relation. Which symbol(s) take us from state **q** to state **r** ?

 \mathbf{q}'

q\r	s0	s1	s2	s3
s0	0	1	2	
s1	1	2		0
s2	2		0	1
s 3		0	1	2

This is a deterministic finitestate automaton, DFA

For every DFA, any input string determines a path or **trace**

input	path
000	s0 s0 s0 s0
021	s0 s0 s2 s3
120	s0 s1 s1 s3
11	
12	
21	
22	
111	
110	
212	

For every DFA, any input string determines a path

input 000 021 120	path s0 s0 s0 s0 s0 s0 s2 s3 s0 s1 s1 s3
11 12	s0 s1 s0 s0 s1 s1
21	s0 s2 s3
22	s0 s2 s0
111	s0 s1 s0 s1
110	s0 s1 s0 s0
212	s0 s2 s3 s3

Which paths

end in an accepting state?

input	path
000	s0 s0 s0 s0
021	s0 s0 s2 s3
120	s0 s1 s1 s3
11	s0 s1 s0
12	s0 s1 s1
21	s0 s2 s3
22	s0 s2 s0
111	s0 s1 s0 s1
110	s0 s1 s0 s0
212	s0 s2 s3 s3

Which paths

end in an accepting state?

0 7 15	input 000 021 120	path s0 s0 s0 s0 s0 s0 s2 s3 s0 s1 s1 s3
4	11	s0 s1 s0
5	12	s0 s1 s1
7	21	s0 s2 s3
8	22	s0 s2 s0
13	111	s0 s1 s0 s1
12	110	s0 s1 s0 s0
23	212	s0 s2 s3 s3

What is the meaning of each state?

()

2

З

4

5

6

8

9

Express each of these decimal numbers in ternary notation, and find out what state is reached by the trace they determine

O 0 s2 s0 2 0 s3 **s**1 0

This is a deterministic finitestate automaton, DFA

What is the meaning of each state?

This machine counts ternary mod 4

$$F(q, s) = 3 * q + s \pmod{4}$$

This is a deterministic finitestate automaton, DFA