Informatics 1
 Computation and Logic

 EntailmentMichael Fourman

Exercise 1.2

$$
\left.A \vee B \begin{array}{|ll|}
\hline 0 & 1 \\
1 & 1 \\
\hline
\end{array} \begin{array}{|ll|}
\hline 1 & 1 \\
\hline 1 & 0 \\
\hline
\end{array} \quad \begin{array}{|ll|}
\hline 1 & 0 \\
1 & 1 \\
\hline 0 & 1
\end{array} \right\rvert\, \begin{array}{|ll|}
\hline 1 & 1 \\
\hline
\end{array} A \rightarrow B
$$

Exercise 1.3

$$
\begin{aligned}
& \begin{array}{ll}
11 \\
1 & \mathrm{~T}
\end{array} \mathrm{~T}
\end{aligned}
$$

$$
\begin{aligned}
& \neg(B \rightarrow A) \quad \neg(A \rightarrow B) \quad \neg(A \vee B) \\
& \begin{array}{l|l|l}
\hline 1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 1
\end{array} A^{\prime} \wedge B \\
& \begin{array}{ll}
0 & 0 \\
0 & 0
\end{array} \perp
\end{aligned}
$$

Q

```
    Q Q
    Q Q
QQQQ}Q
Q Q O
Q
```


Lewis Carroll (The Rev. C.L. Dodgson)

A
G

$\{x \mid G(x) \leftrightarrow R(x) \leftrightarrow A(x)\}$

Karnaugh Maps

4 atoms:16 states: 64K subsets

(R?A:G)

if R then A else G

multiplexer - ITE

$R ? \perp: T$
R?T:A
R?A: \perp
R?A:T
R ? $\perp: A$

$$
\begin{array}{cc}
R ? \perp: T & \neg R \\
R ? T: A & R \vee A \\
R ? A: \perp & R \wedge A \\
R ? A: T & R \rightarrow A \\
R ? \perp: A & \neg(A \rightarrow R)
\end{array}
$$

$$
\begin{aligned}
& 000000000 \\
& \text { 010006003 }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (1) Sinnuric (a) } \\
& \text { 0000000 } \\
& \text { 60000000. } \\
& 000006000
\end{aligned}
$$

The traffic light has only four states. the diagram shows a two-bit encoding of these four states. If we call the two bits X and Y then the next state logic can be given by

$$
X^{\prime}=X \oplus Y \text { and } Y^{\prime}=\neg Y
$$

and the output logic (the signals to the lights) by

$$
R=\neg X \quad A=Y \quad G=\neg X \wedge Y
$$

This question concerns a different two-bit encoding of the four states, as shown below.

Give expressions for the next state logic

$$
X^{\prime}=Y \quad Y^{\prime}=\neg X
$$

and the output logic

$$
R=\neg X \quad A=X \oplus Y \quad G=X \wedge Y
$$

R	A	G	$\boldsymbol{? ?}$
0	0	0	$\mathbf{1}$
0	0	1	$\mathbf{0}$
0	1	0	$\mathbf{1}$
0	1	1	$\mathbf{1}$
1	0	0	$\mathbf{1}$
1	0	1	$\mathbf{0}$
1	1	0	$\mathbf{0}$
1	1	1	$\mathbf{1}$

Karnaugh Maps

4 atoms:16 states: 64K subsets

