
Informatics 1
Computation and Logic

Traffic Lights
Michael Fourman

@mp4man

1

This course provides a first glimpse of the deep connections between computation and logic. We will focus primarily on the
simplest non-trivial examples of logic and computation: propositional logic and finite-state machines.
In this lecture we briefly look again at the Wolf Goose and Corn example. We will then look at another example that
introduces some ideas that we will explore further in later lectures, and introduce some notation which should become more
familiar in due course.

1

West East

WW WB WE

CW CB CE

GW GB GE

FW FB FE

2

A farmer has to get a wolf, a goose, and a sack of corn across a river.

She has a boat, which can only carry her and one other thing.

If the wolf and the goose are left together, the wolf will eat the goose.

If the goose and the corn are left together, the chicken will eat the corn.

2

3

A farmer has to get a wolf, a goose,
and a sack of corn across a river.

How can we use logic to specify the transitions?

www.inf.ed.ac.uk/teaching/courses/inf1/cl/FWC/

3

4

A farmer has to get a wolf, a goose,
and a sack of corn across a river.

How can we use logic to specify the transitions?

www.inf.ed.ac.uk/teaching/courses/inf1/cl/FWC/

4

5

A farmer has to get a wolf, a goose,
and a sack of corn across a river.

How can we use logic to specify the transitions?

www.inf.ed.ac.uk/teaching/courses/inf1/cl/FWC/

5

6

A farmer has to get a wolf, a goose,
and a sack of corn across a river.

How can we use logic to specify the transitions?

www.inf.ed.ac.uk/teaching/courses/inf1/cl/FWC/

6

7

A farmer has to get a wolf, a goose,
and a sack of corn across a river.

How can we use logic to specify the transitions?

www.inf.ed.ac.uk/teaching/courses/inf1/cl/FWC/

7

West East

WW WB WE

CW CB CE

GW GB GE

FW FB FE

8

(WW ⊕ WB ⊕ WE) ∧ ¬(WW ∧ WB ∧ WE)
GB → FB

GW ∧ (WW ∨ CW) → FW
¬(GB ∧ CB) ∧ ¬(GB ∧ WB) ¬(WB ∧ CB)

one place
not solo

no conflict
no overload

8

West East

WW WB WE

CW CB CE

GW GB GE

FW FB FE

9

(WW ⊕ WB ⊕ WE) ∧ ¬(WW ∧ WB ∧ WE)
GB → FB

GW ∧ (WW ∨ CW) → FW
¬(GB ∧ CB) ∧ ¬(GB ∧ WB) ¬(WB ∧ CB)

one place
not solo

no conflict
no overload

×4
×3
×2
×1

9

West East

WW WB WE

CW CB CE

GW GB GE

FW FB FE

10

WB ↔ (¬WW ∧ ¬WE)

↔ ⊥ ⊤
⊥ ⊤ ⊥
⊤ ⊥ ⊤

⊥ ⊤
⊥ ⊤ ⊥
⊤ ⊥ ⊤

=⊕ ⊥ ⊤
⊥ ⊥ ⊤
⊤ ⊤ ⊥

⊥ ⊤
⊥ ⊥ ⊤
⊤ ⊤ ⊥

≠

10

West East

WW WE

CW CE

GW GE

FW FE

11

WB ↔ (WW ∧ WE)
WW ↔ ¬WW

×4
×8

WW ∨ WE one place
not solo

no conflict
no overload

×4
×3
×2
×1

This encoding uses only 8
propositional atoms – 256 states.

The oneplace axiom is now simpler.
It eliminates one quarter of the 256
states, leaving 192.

We can use different atoms to
model the system.

We introduce 8 atoms whose
meanings are given as the
negations of the east and west
propositions we used earlier.

e.g WW ↔ ¬WW
We can define the old propositions
in terms of the new ones:

Give the other axioms in terms of the new atoms.

11

12

Our example is a traffic light controller, which generates the cyclic sequence of lights stipulated in the Highway Code:
red – red-amber – green – amber

Cars are permitted to proceed when the green light shows; in all other cases they must stop before the white line, if it is safe
to do so.

12

red

amber

green

13

A B C D

red iff A or B
amber iff B or D
green iff C

A

D B

C

logic & computation

In this course we will introduce the tools required to specify and analyse more complicated examples of such systems.
We can describe this simple example as a machine that cycles through four states, with a logical equation for each light that
describes the set of states in which that light is on.
“iff” means “if and only if”.
The machine describes a simple ‘computation’ : start in state A and cycle through the four states.
The logical formulae describe the logic.

13

14

A

D B

C

current

next

A B C D
B C D A

We can draw a state-transition diagram (shown to the left of this slide) to describe the permitted sequence of states, or give a
next-state table (shown on the right) showing which next state corresponds to each current state.

14

current

next

R

A

G

R0

A0

G0

15

A

D

B

C

current

next

A B C D
B C D A

We can draw a state-transition diagram (shown to the left of this slide) to describe the permitted sequence of states, or give a
next-state table (shown on the right) showing which next state corresponds to each current state.

This system is deterministic. The next state is completely determined by the current state.

15

current

next

R

A

G

R0

A0

G0

16

We can draw a state-transition diagram (shown to the left of this slide) to describe the permitted sequence of states, or give a
next-state table (shown on the right) showing which next state corresponds to each current state.

16

current

next

R

A

G

R0

A0

G0

R0
= R xorA = R�A

A0
= notA = ¬A

G0
= R andA = R ^A

A ¬A
0 1
1 0

R A R ^A R�A
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

17

We can describe the next state of the lights in terms of the current state. The state is described by saying which lights are on
and which are off.
Let R A G be binary variables, each taking a 0-1 value (zero or one), corresponding to the red, amber and green lights. A
value of zero indicates that the corresponding light is off; a value of one indicates that it is on. We write R’ A’ G’ for the next-
state variables. Then, for example, the amber light is on in the next state if and only if (iff) it is off in the current state. We can
write this as an equation, A’ = not A, where not is the operation defined by the truth table: not 1 = 0 ; not 0 = 1.

17

OR

XOR

AND

NOT

18

The computation of the next state can be implemented by some basic logic gates. These are circuits that take signals
representing binary values as inputs (on the left of each gate in our diagram) and produce a signal representing the output
value specified by the relevant truth table.
The symbols are idealisations the actual circuits may have other connections, for example, to provide power.

18

R’ = R xor A
A’ = not A
G’ = R and A

current

next

19

The next-state logic for sequencing our traffic lights can be implemented using three different gates. Many different
technologies can be used to implement logic gates, some may use high and low voltages to represent binary values, others
might use currents, but this logical description of our circuit provides a common abstract level of design.
In our diagram, the current state is stored in the three coloured discs. The outputs of the three gates represent the next
state. To make the state transition we need to replace the current state by the next state.
We need memory. One simple form of memory is a latch, a special kind of circuit with two inputs, data and clock. When the
clock ticks the current input data value is loaded and stored. The stored value is output, and does not change until the next
tick of the clock.

19

R’ = R xor A
A’ = not A
G’ = R and A

current

next

20

3-bit m
em

ory

Clock ticks

The next-state logic for sequencing our traffic lights can be implemented using three different gates. Many different
technologies can be used to implement logic gates, some may use high and low voltages to represent binary values, others
might use currents, but this logical description of our circuit provides a common abstract level of design.
In our diagram, the current state is stored in the three coloured discs. The outputs of the three gates represent the next
state. To make the state transition we need to replace the current state by the next state.
We need memory. One simple form of memory is a latch, a special kind of circuit with two inputs, data and clock. When the
clock ticks the current input data value is loaded and stored. The stored value is output, and does not change until the next
tick of the clock.

20

combinational
logic

current
state

inputs outputs

next
state m

em
ory

21

This gives us one basic architecture for implementing a finite-state machine. This is a clocked circuit. Our clock is digital: it
issues a discrete series of ticks. A memory stores the current state. At each tick of the clock, the next state is loaded into
memory, and becomes the current state. A combinational logic circuit computes the next state and outputs from the current
state and inputs. It takes some time for the next state to be computed. The loading of the memory must be completed
before this happens, to avoid conflict and confusion. Furthermore, the next clock tick should only come after the
computation is completed. So, some delay in the combinational logic is essential, to allow time for the memory to be loaded
before the new values occur, and the timing of the next tick of the clock must allow ample time for this delay.

21

22

Since there are three lights, there are actually eight possible states for the signal. If we look back at our logic design, we see
that only the values of R and A are used to compute the next state.

22

23

In real life, things get much more complex. One of the things we will start to discuss later in this course is how to describe
and analyse more complex machines.

23

R’ = R xor A
A’ = G or (R and not A)
G’ = R and A

current

next

Exercise 1.2

24

Slide 19 shows an implementation of the traffic light controller.
We could have designed our logic differently.
For example, letting
A’ = G or (R and not A).
Draw the circuit for this implementation.
Is this a correct implementation of the controller? Explain your answer.

24

Exercise 1.4

R

A G

RA

RA

GA

R

25

As discussed in the lecture, the diagram represents the beginnings of a refinement of our description of the traffic light
controller. We model a sensor that detects a car ready to pass the light. For each state of the lights, (R, RA, G, A) we have
two states, one (with a double circle) where there is a car, and the other, without a car, as before.
Draw arrows to indicate state changes that still obey the correct sequence for the lights, but also respect the following two
rules.
1. A car can only pass the light if it is green.
2. The light only changes from red to red-amber when a car is detected
Optional: You may also design the logic for the controller.
Use a new boolean variable C to represent the presence of a car, and give equations for R’ A’ and G’.
Should we also give an equation for C’ ?

25

26

A farmer has to get a wolf, a goose,
and a sack of corn across a river.

How can we use logic to specify the transitions?

www.inf.ed.ac.uk/teaching/courses/inf1/cl/FWC/

26

27

How can we use logic to specify the
transitions?

This is a non-deterministic system. We define a next state relation.

www.inf.ed.ac.uk/teaching/courses/inf1/cl/FWC/

27

28

How can we use logic to specify the
transitions?

This is a non-deterministic system.
We define a next state relation.

Again we introduce next state
variables WW′ etc.

Here we have
FW ∧ WW ∧ GW ∧ CW

Is it possible that WE′ ?

www.inf.ed.ac.uk/teaching/courses/inf1/cl/FWC/

28

29

How can we use logic to specify the
transitions?

This is a non-deterministic system.
We define a next state relation.

Again we introduce next state
variables WW′ etc.

Here we have
FW ∧ WW ∧ GW ∧ CW

Is it possible that WE′ ? NO

One thing true in our model is that
WE′ → WE ∨ WB

What else do we need to say to give
a complete description ?

www.inf.ed.ac.uk/teaching/courses/inf1/cl/FWC/

What does it mean for a description to be complete?

29

