
Informatics 1
Lecture 19 Searching for Satisfaction

Michael Fourman

1

Clausal Form

3

Clausal form is a set of sets of literals
{ {¬A,C}, {¬B,D}, {¬E,B}, {¬E,A}, {A,E}, {E,B},{¬B, ¬C, ¬D} }

A (partial) truth assignment makes a clause true
iff it makes at least one of its literals true

(so it can never make the empty clause {} true)

A (partial) truth assignment makes a clausal form true
iff it makes all of its clauses true

(so the empty clausal form {} is always true).

⋀⋁

The satisfiability problem (SAT) is a fundamental problem from
computer science.

It is the problem to decide whether a formula of N Boolean
variables can be satisfied, i.e. evaluated to TRUE by an

assigment of the variables.

Without loss of generality one can assume that the formula is
organized as conjunction of clauses, where each clause is a

disjunction of literals.

SAT is a very important problem in theoretical computer
science (some people would even say: the most important

problem),

but it has numerous practical applications as well.

55

Perth

Adelaide

Melbourne

Hobart

Darwin

Sydney

Brisbane

6

P

D

A S

H

M

B

7

P

D

A S

H

M

B

7 nodes
9 edges

8

P

D

A S

H

M

B

Br
Bg
Ba

Hr
Hg
Ha

3 for each edge (eg D–B)
¬Dr ⋁ ¬Br

¬Dg ⋁ ¬Bg
¬Da ⋁ ¬Ba

1 for each node (eg D)
Dr ⋁ Dg ⋁Da

red
green
amber

M
el

bo
ur

ne

Sy
dn

ey

H
ob

ar
t

D
ar

w
in

Pe
rth

A
de

la
id

e

B
ris

ba
ne

Mr
Mg
Ma

Sr
Sg
Sa

Dr
Dg
Da

Pr
Pg
Pa

Ar
Ag
Aa

21
atoms

34 clauses

eg:
Pr ≡ red(Perth)

9

Br
Bg
Ba

Hr
Hg
Ha

3 for each edge (e.g. D–B)
¬Dr ⋁ ¬Br

¬Dg ⋁ ¬Bg
¬Da ⋁ ¬Ba

1 for each node (e.g. D)
Dr ⋁ Dg ⋁Da

red
green
amber

M
el

bo
ur

ne

Sy
dn

ey

H
ob

ar
t

D
ar

w
in

Pe
rth

A
de

la
id

e

B
ris

ba
ne

Mr
Mg
Ma

Sr
Sg
Sa

Dr
Dg
Da

Pr
Pg
Pa

Ar
Ag
Aa

21
atoms

34 clauses

Pg

Dr

Aa Sr

Hr
Mg

Bg

 10

Pg

Dr

Aa Sr

Hr

Mg

Bg

 11

Pg

Dr

Sr

Hr

Mg

Bg

Aa

12

P

D

A S

H

M

B

Br
Bg
Ba

Hr
Hg
Ha

3 for each edge (eg D–B)
¬Dr ⋁ ¬Br

¬Dg ⋁ ¬Bg
¬Da ⋁ ¬Ba

1 for each node (eg D)
Dr ⋁ Dg ⋁Da

red
green
amber

M
el

bo
ur

ne

Sy
dn

ey

H
ob

ar
t

D
ar

w
in

Pe
rth

A
de

la
id

e

B
ris

ba
ne

Mr
Mg
Ma

Sr
Sg
Sa

Dr
Dg
Da

Pr
Pg
Pa

Ar
Ag
Aa

21
atoms

34 clauses

eg:
Pr ≡ red(Perth)

13

Sudoku

14

Squares i, j (i, j ∈ (1..9))
Numbers k (k ∈ (1..9))

729 (= 93) Atoms pi, j, k

pi, j, k
means

the number k is in square i,j
A sudoku problem is defined  

by saying which numbers are in which squares

15

at most one number per square

every number occurs in each row

every number occurs in each column

every number occurs in top-left square

every number occurs in centre-left square

every number occurs in bottom-left square

every number occurs in top-middle square

16

729 atoms
structural constraints include  

many, many occurrences of literals
How Many?

every number occurs in centre-middle square

every number occurs in bottom-middle square

every number occurs in top-right square

every number occurs in centre-right square

every number occurs in bottom-right square

A clausal form with at most two literals per clause.

Corresponds to a conjunction of implications.

We can draw the directed graph and count the
satisfying valuations.

When clauses with 3 or more literals are involved,
satisfaction gets complicated.

In general, we must search for satisfaction.

2-SAT

If every clause has 2 variables (2-SAT) the problem is easy.
If every clause has 3 variables (3-SAT) the problem is hard.

A clause with K literals excludes 1/2K of the 2N possible
assignments and the whole formula is satisfiable if the number

of clauses is small compared to the number of variables.

Just by counting, we can see that a K-SAT problem is
satisfiable if the number of clauses is less than 2K, and it is

easy to exclude all valuations with 2K clauses

For a large number of variables, N,
a random 3-SAT problem with N variables,

with less than ~ 4.2 N clauses if is probably satisfiable;
with more than ~ 4.2 N clauses if is probably not satisfiable.

Hard problems appear near the boundary.

Naïve search
function SAT(Φ,V)
 Φ|V = {}
 ||
 {} ∉ Φ|V
 &&
 let A = chooseLiteral (Φ,V)
 in
 SAT (Φ,V ^ A)
 ||
 SAT (Φ,V ^ ¬A)

Φ is a set of clauses

V is a partial valuation
(a consistent set of literals)

V^A = V∪{A}

Φ | V is the result of
simplifying Φ using V:
For each literal L ∈ V

• remove clauses
containing L
• delete ¬L from
remaining clauses

chooseLiteral(Φ,V) returns a literal occurring in Φ | V

partial valuations

22

A B C

¬C B D

¬A B C

¬A ¬B ¬C

[]V : Φ

A B C

¬C B D

¬A B C

¬A ¬B ¬C

Φ | V

[]

search

23

A B C

¬C B D

¬A B C

¬A ¬B ¬C

[A]V : Φ

A B C

¬C B D

¬A B C

¬A ¬B ¬C

Φ | V

[]

A

search

24

A B C

¬C B D

¬A B C

¬A ¬B ¬C

[A,B]V : Φ

A B C

¬C B D

¬A B C

¬A ¬B ¬C

Φ | V

[]

A

AB

search

25

A B C

¬C B D

¬A B C

¬A ¬B ¬C

[A,B,C]V : Φ

A B C

¬C B D

¬A B C

¬A ¬B ¬C

Φ | V

[]

A

AB

A,B,C

search

26

A B C

¬C B D

¬A B C

¬A ¬B ¬C

[A,B]V : Φ

A B C

¬C B D

¬A B C

¬A ¬B ¬C

Φ | V

[]

A

AB

A,B,C

✘

search

27

A B C

¬C B D

¬A B C

¬A ¬B ¬C

[A,B,C]V : Φ

A B C

¬C B D

¬A B C

¬A ¬B ¬C

Φ | V

[]

A

AB

A,B,C A,B,¬C

✘

search

✔

28

A B C

¬C B D

¬A B C

¬A ¬B ¬C

[A,B,C]V : Φ

A B C

¬C B D

¬A B C

¬A ¬B ¬C

Φ | V

[]

A

AB

A,B,C A,B,¬C

✔✘

search

29

A B C

¬C B D

¬A B C

¬A ¬B ¬C

[A,B,C]V : Φ

A B C

¬C B D

¬A B C

¬A ¬B ¬C

Φ | V

[]

A

AB

A,B,C A,B,¬C

✔✘

search

30

A B C

¬C B D

¬A B C

¬A ¬B ¬C

[A,B,C]V : Φ

A B C

¬C B D

¬A B C

¬A ¬B ¬C

Φ | V

[]

A

AB

A,B,C A,B,¬C

✔✘

search

