Regular Languages

Cl

Informatics 1
School of Informatics, University of Edinburgh

® deterministic machines
® |anguages and machines

® the Boolean algebra of languages

® non-determinism




Informatics 1
School of Informatics, University of Edinburgh



4 ™\
number of 1’s and

number of O’s

are the same
\

P
number of 1’s is
one larger than

number of O’s
-

4 N\
number of O’s is

one larger than
number of 1’s

o

-

-

Black hole; we can
never escape from
here to an acceptor

~

J

Accepts strings of 0’s and 1’s for which the difference between
number of 0’s and number of 1’s in a subsequence is at most 1.

Informatics 1
School of Informatics, University of Edinburgh



A finite-state automaton, or machine (FSM)
M consists of:

Q: the set of states,

2. the alphabet of the machine

- the tokens the machine can process,
. the set of beginning or start states of the machine
. the set of accepting states.
the set of transitions
IS a set of (state, symbol, state) triples
0 CcQx2xQ.

An FSM is a deterministic automaton DFA if
it has a single start state B={so0 }
and it has a next-state function
F:Qx2—Q
suchthatd={(q,s, F(q,s))1(g,s) e Qx X}

o> W




. anguage

2. a finite alphabet

A language L is a set of finite strings

Lc2”

where the strings in 2* are of
finite sequences of tokens from 2
the string < Xo, ..., Xn-1 > has length n
strings include the empty string
e = <> of length O



Traces

Let M = (Q, 2, B, A, d) be a machine,
and s =<Xog, ..., Xn-1 > € 2"

A trace for sin M is a
sequence < qo, ..., gn > € Q* of states

>
- Xn-1

X0
such that \

(ai, xi, Qi+1) € ®, for each i < n,



Traces

Let M =(Q, Z, B, A, ) be a machine,
ands =<Xop, ..., Xn-1 > € 27

A trace forsin M is a
sequence < Qo, ..., 0n > € Q* of states

such that
(Qi, i, Qi+1) € O, for each i < n,

@ Whenn=0 <>

A single state path < qo>
IS a trace for the empty string <>



The language accepted by a machine {&):

)gvgrt state - ]S o @CCGDTOI’ state }

A string s is accepted if there is a trace for s
from an initial state to an acceptor state.

The language of M is the set of sequences it accepts.

L(M) ¢ >*

Two machines are equivalent if they define the same language.

Informatics 1
School of Informatics, University of Edinburgh



A regular language is

a language represented by some DFA



Are these two machines equivalent?




Are these two machines equivalent?

It there is a path from
the start state to an
accepting state then
1 0 it only uses states
1,2,3

The two machines accept the same strings



A machine with at most one transition
with a given label from a given state

1 0
This machine is not a DFA

@ 0 1 @ but it is equivalent to a DFA



A machine with at most one transition
with a given label from a given state

1 0
// \\ This machine is not a DFA

3 but it is equivalent to a DFA

If a machine has at most one transition
with a given label from any state

Then we can construct an equivalent DFA by adding a
new black-hole state, which is not an accepting state
and making the missing transitions go there.



Determinism

If we have a machine with at most one

transition for each (q,s) pair, we can always For this machine
convert to an equivalent DFA for which h : f

every state has exactly one transition €re 1S exactly one
leaving the state for each input symbol. trace for each input

 Proof string

Add a new “black hole” state, e

For every pair (q, s) for which there is no state r with a transition
T(q, s, r), add a transition T(q, s, ).

This includes a transition T(e, a, ) for each a € Z . You cannot
escape from the black hole.

The black hole e is not an accepting state.
This machine accepts the same language as the original.

Informatics 1
School of Informatics, University of Edinburgh

14



Any language recognised by
a machine with at most one transition
with a given label from a given state
IS regular.



@ Accepting state

@i»@ Transition

depending on the application,
a is a letter, symbol, token, action, ...



Abstraction

What happens if we make some transitions invisible?

f2c2 ,say2' =2>ule}
then
from every string in 2’
we can get a string in 2*
by erasing all occurrences of €

If L" is a regular language with alphabet 2’
the language L is obtained from L’
by deleting all occurrences of €
IS L a regular language



non-determinism

many arguments are easier for NFA

we will see that NFA with an invisible € define the
same languages as NFA without €

we will see that NFA the languages defined by NFA
form a Boolean Algebra of subsets of >2*

we will see that NFA define the same languages as
DFA, so any language defined by an NFA is regular



Abstraction

What happens if we make some transitions invisible?

f2c2 ,say2' =2>ule}
then
from every string in 2’
we can get a string in 2*
by erasing all occurrences of €

If L" is a regular language with alphabet 2’
the language L is obtained from L’
by deleting all occurrences of €
IS L a regular language



Suppose we have a machine
with transitions as shown, that
recognises L.

Can we create a machine without
e that recognises L7



Whenever (g, €, p) €
remove this transition and for every
transition (X, s, q) €
add a transition (X, s, p);

If q is a start state, make p a start state

The new machine has alphabet > and recognises L



start o accept‘

finite state machines

e
4




sequence
RS

]




alternation
RIS




Iiteration




