
cl
Informatics 1
School of Informatics, University of Edinburgh

Regular Languages

• deterministic machines

• languages and machines

• the Boolean algebra of languages

• non-determinism

1

Informatics 1
School of Informatics, University of Edinburgh

2

Acceptor Example

3

4

2

1
0

0

0

01

1

1

1

Informatics 1
School of Informatics, University of Edinburgh

3

Acceptor Example

number of 1’s is
one larger than
number of 0’s

number of 0’s is
one larger than
number of 1’s

number of 1’s and
number of 0’s
are the same

Black hole; we can
never escape from
here to an acceptor

Accepts strings of 0’s and 1’s for which the difference between
number of 0’s and number of 1’s in a subsequence is at most 1.

3

4

2

1
0

0

0

01

1

1

1

A finite-state automaton, or machine (FSM)
M consists of:
Q: the set of states,
Σ: the alphabet of the machine

- the tokens the machine can process,
B: the set of beginning or start states of the machine
A: the set of accepting states.
δ: the set of transitions

is a set of (state, symbol, state) triples
δ ⊆ Q × Σ x Q.

An FSM is a deterministic automaton DFA if
it has a single start state B = { s0 }

and it has a next-state function
F : Q × Σ → Q

such that δ = { (q, s, F(q,s)) | (q,s) ∈ Q × Σ }

Language
Σ: a finite alphabet

A language L is a set of finite strings

L ⊆ Σ*

where the strings in Σ* are of
finite sequences of tokens from Σ

the string < x0, …, xn-1 > has length n
strings include the empty string

ε = <> of length 0

Traces
Let M = (Q, Σ, B, A, δ) be a machine,

and s = < x0, …, xn-1 > ∈ Σ*

 A trace for s in M is a
sequence < q0, …, qn > ∈ Q* of states

such that

(qi, xi, qi+1) ∈ δ, for each i < n,
q0 qn

x0
xn-1

Traces
Let M = (Q, Σ, B, A, δ) be a machine,

and s = < x0, …, xn-1 > ∈ Σ*

 A trace for s in M is a
sequence < q0, …, qn > ∈ Q* of states

such that
(qi, xi, qi+1) ∈ δ, for each i < n,

q0 When n=0

A single state path < q0 >
is a trace for the empty string <>

<>

Informatics 1
School of Informatics, University of Edinburgh

The language accepted by a machine

8

s acceptor state

A string s is accepted if there is a trace for s
from an initial state to an acceptor state.

The language of M is the set of sequences it accepts.

L(M) ⊆ Σ*
Two machines are equivalent if they define the same language.

start state

A regular language is

a language represented by some DFA

3

4

2

1
0

0

0

01

1

1

1

32

1
0

0 1

1

Are these two machines equivalent?

3

4

2

1
0

0

0

01

1

1

1

32

1
0

0 1

1

Are these two machines equivalent?

Yes
If there is a path from
the start state to an

accepting state then
it only uses states  

1, 2, 3

The two machines accept the same strings

32

1
0

0 1

1

A machine with at most one transition
with a given label from a given state

This machine is not a DFA
but it is equivalent to a DFA

32

1
0

0 1

1

A machine with at most one transition
with a given label from a given state

This machine is not a DFA
but it is equivalent to a DFA

If a machine has at most one transition
with a given label from any state

Then we can construct an equivalent DFA by adding a
new black-hole state, which is not an accepting state

and making the missing transitions go there.

Informatics 1
School of Informatics, University of Edinburgh

Determinism

• Proof
Add a new “black hole” state, ●
For every pair (q, s) for which there is no state r with a transition
T(q, s, r), add a transition T(q, s, ●).
This includes a transition T(●, a, ●) for each a ∈ Σ . You cannot
escape from the black hole.
The black hole ● is not an accepting state.

This machine accepts the same language as the original.

14

For this machine
there is exactly one
trace for each input

string

If we have a machine with at most one
transition for each (q,s) pair, we can always
convert to an equivalent DFA for which
every state has exactly one transition
leaving the state for each input symbol.

Any language recognised by
a machine with at most one transition
with a given label from a given state

is regular.

Start state

State

Accepting state

s t
a Transition

depending on the application,
a is a letter, symbol, token, action, …

Abstraction
What happens if we make some transitions invisible?

if Σ ⊆ Σʹ , say Σʹ = Σ ∪ {ε}
then

from every string in Σʹ*
we can get a string in Σ*

by erasing all occurrences of ε

If Lʹ is a regular language with alphabet Σʹ
the language L is obtained from Lʹ

by deleting all occurrences of ε
is L a regular language

non-determinism
• many arguments are easier for NFA

• we will see that NFA with an invisible ε define the
same languages as NFA without ε

• we will see that NFA the languages defined by NFA
form a Boolean Algebra of subsets of Σ*

• we will see that NFA define the same languages as
DFA, so any language defined by an NFA is regular

Abstraction
What happens if we make some transitions invisible?

if Σ ⊆ Σʹ , say Σʹ = Σ ∪ {ε}
then

from every string in Σʹ*
we can get a string in Σ*

by erasing all occurrences of ε

If Lʹ is a regular language with alphabet Σʹ
the language L is obtained from Lʹ

by deleting all occurrences of ε
is L a regular language

p

s

q εa

Suppose we have a machine
with transitions as shown, that

recognises Lʹ.

Can we create a machine without
ε that recognises L?

r

b

p

s

q ε
a

Whenever (q, ε, p) ∈ δ
remove this transition and for every

transition (x, s, q) ∈ δ
add a transition (x, s, p);

if q is a start state, make p a start state

r

b b

a

The new machine has alphabet Σ and recognises L

finite state machines

R S

22

start accept

sequence
RS

23

R S

εε

ε

alternation
R|S

24

R S

εε

ε ε

iteration
R*

25

R

ε
ε

ε
ε

