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Regular Languages

• deterministic machines

• languages and machines

• the Boolean algebra of languages

• non-determinism
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Acceptor Example

3

4

2

1
0

0

0

01

1

1

1



Informatics 1 
School of Informatics, University of Edinburgh

3

Acceptor Example

number of 1’s is 
one larger than 
number of 0’s

number of 0’s is 
one larger than 
number of 1’s

number of 1’s and 
number of 0’s 
are the same

Black hole; we can  
never escape from  
here to an acceptor 

Accepts strings of 0’s and 1’s for which the difference between 
number of 0’s and number of 1’s in a subsequence is at most 1.
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A finite-state automaton, or machine (FSM) 
M consists of: 
Q: the set of states, 
Σ: the alphabet of the machine  

- the tokens the machine can process, 
B: the set of beginning or start states of the machine 
A: the set of accepting states. 
δ: the set of transitions  

is a set of (state, symbol, state) triples 
δ ⊆ Q × Σ x Q.

An FSM is a deterministic automaton DFA if 
it has a single start state B = { s0 }  

and it has a next-state function  
F : Q × Σ → Q

such that δ = { ( q, s, F(q,s)) | (q,s) ∈ Q × Σ }



Language
Σ: a finite alphabet 

A language L is a set of finite strings 

L ⊆ Σ* 

where the strings in Σ* are of  
finite sequences of tokens from Σ 

the string < x0, …, xn-1 > has length n 
strings include the empty string  

ε = <> of length 0



Traces
Let M = (Q, Σ, B, A, δ) be a machine, 

and s = < x0, …, xn-1 > ∈ Σ*

 A trace for s in M is a  
sequence < q0, …, qn > ∈ Q* of states 

such that 

(qi, xi, qi+1) ∈ δ, for each i < n, 
q0 qn

x0
xn-1



Traces
Let M = (Q, Σ, B, A, δ) be a machine, 

and s = < x0, …, xn-1 > ∈ Σ*

 A trace for s in M is a  
sequence < q0, …, qn > ∈ Q* of states 

such that 
(qi, xi, qi+1) ∈ δ, for each i < n, 

q0 When n=0 

A single state path < q0 >  
is a trace for the empty string <>

<>
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The language accepted by a machine
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s acceptor state

A string s is accepted if there is a trace for s  
from an initial state to an acceptor state.

The language of M is the set of sequences it accepts. 

L(M) ⊆ Σ* 
Two machines are equivalent if they define the same language.

start state



A regular language is 
  

a language represented by some DFA



3

4

2

1
0

0

0

01

1

1

1

32

1
0

0 1

1

Are these two machines equivalent?
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Are these two machines equivalent?

Yes 
If there is a path from 
the start state to an 

accepting state then 
it only uses states  

1, 2, 3

The two machines accept the same strings
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A machine with at most one transition  
with a given label from a given state

This machine is not a DFA 
but it is equivalent to a DFA
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A machine with at most one transition  
with a given label from a given state

This machine is not a DFA 
but it is equivalent to a DFA

If a machine has at most one transition  
with a given label from any state

Then we can construct an equivalent DFA by adding a  
new black-hole state, which is not an accepting state 

and making the missing transitions go there.
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Determinism

• Proof 
Add a new “black hole” state, ● 
For every pair (q, s) for which there is no state r with a transition 
T(q, s, r), add a transition T(q, s, ●). 
This includes a transition T(●, a, ●) for each a ∈ Σ . You cannot 
escape from the black hole. 
The black hole ● is not an accepting state. 

This machine accepts the same language as the original.
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For this machine 
there is exactly one 
trace for each input 

string

If we have a machine with at most one 
transition for each (q,s) pair, we can always 
convert to an equivalent DFA for which 
every state has exactly one transition 
leaving the state for each input symbol.



Any language recognised by  
a machine with at most one transition  
with a given label from a given state 

is regular.



Start state

State

Accepting state

s t
a Transition

depending on the application, 
a is a letter, symbol, token, action, …



Abstraction
What happens if we make some transitions invisible? 

if Σ ⊆ Σʹ , say Σʹ = Σ ∪ {ε} 
then  

from every string in Σʹ*  
we can get a string in Σ* 

by erasing all occurrences of ε 

If Lʹ is a regular language with alphabet Σʹ  
the language L is obtained from Lʹ 

by deleting all occurrences of ε  
is L a regular language



non-determinism
• many arguments are easier for NFA 

• we will see that NFA with an invisible ε define the 
same languages as NFA without ε 

• we will see that NFA the languages defined by NFA 
form a Boolean Algebra of subsets of Σ* 

• we will see that NFA define the same languages as 
DFA, so any language defined by an NFA is regular



Abstraction
What happens if we make some transitions invisible? 

if Σ ⊆ Σʹ , say Σʹ = Σ ∪ {ε} 
then  

from every string in Σʹ*  
we can get a string in Σ* 

by erasing all occurrences of ε 

If Lʹ is a regular language with alphabet Σʹ  
the language L is obtained from Lʹ 

by deleting all occurrences of ε  
is L a regular language
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Suppose we have a machine 
with transitions as shown, that 

recognises Lʹ. 

Can we create a machine without 
ε that recognises L?

r

b
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q ε
a

Whenever (q, ε, p) ∈ δ  
remove this transition and for every 

transition (x, s, q) ∈ δ 
add a transition (x, s, p);

if q is a start state, make p a start state

r

b b

a

The new machine has alphabet Σ and recognises L



finite state machines

R S

22

start accept



sequence 
RS
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alternation 
R|S
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iteration 
R*
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