Finite-State Machines (Automata) lecture 13

- a simple form of computation
- used widely
- one way to find patterns
- one way to describe reactive systems

Reactive Systems

- Wait to receive an input
- Respond with:
 - an output (possibly changing to a new state) or
 - change to new state without output
- Response depends on (finite) history

Finite State Machines

- A conceptual tool for modelling reactive systems.
- Not limited to software systems.
- Used to specify required system behaviour in a precise way.
- Then implement as software/hardware (and perhaps verify behaviour against FSM).

depending on the application, **a** is a letter, symbol, token, action, ...

This machine has four states, $Q = \{ s0, s1, s2, s3 \}$ Its alphabet has three symbols $\Sigma = \{0, 1, 2\}$ For each (state, symbol) pair, (q,s) there is exactly one transition from **q** with label **s**

This means that **q**' is **determined** by **(q,s)**

For each

(state, symbol) pair, **(q,s)** there is **exactly one** transition from **q** with label **s**

q' is determined by (q,s)

Every DFA has a next-state function q' = F(q,s)

Every DFA has a next-state function q' = F(q,s)

Since we have finitely many symbols and states This can be given by a table

Every DFA has a next-state function q' = F(q,s)

Since we have finitely many symbols and states This can be given by a **next-state table**

q\s	0	1	2
s0	s0	s1	s2
s1	s3	sO	s1
s2	s2	sЗ	s0
s3	s1	s2	s3

Every DFA has a next-state function q' = F(q,s)

q

We can also represent the transitions by a relation. Which symbol(s) take us from state **q** to state **r** ?

 \mathbf{q}'

q\r	s0	s1	s2	s3
s0	0	1	2	
s1				
s 2				
s 3		0	1	

Every DFA has a next-state function q' = F(q,s)

q

We can also represent the transitions by a relation. Which symbol(s) take us from state **q** to state **r** ?

 \mathbf{q}'

q\r	s0	s1	s2	s3
s0	0	1	2	
s1	1	2		0
s 2	2		0	1
s 3		0	1	2

For every DFA, any input string determines a path or **trace**

input	path
000	s0 s0 s0 s0
021	s0 s0 s2 s3
120	s0 s1 s1 s3
11	
12	
21	
22	
111	
110	
212	

For every DFA, any input string determines a path

input	path
000	s0 s0 s0 s0
021	s0 s0 s2 s3
120	s0 s1 s1 s3
11	s0 s1 s0
12	s0 s1 s1
21	s0 s2 s3
22	s0 s2 s0
111	s0 s1 s0 s1
110	s0 s1 s0 s0
212	s0 s2 s3 s3

Which paths

end in an accepting state?

input	path
000	s0 s0 s0 s0
021	s0 s0 s2 s3
120	s0 s1 s1 s3
11	s0 s1 s0
12	s0 s1 s1
21	s0 s2 s3
22	s0 s2 s0
111	s0 s1 s0 s1
110	s0 s1 s0 s0
212	s0 s2 s3 s3

Which paths

end in an accepting state?

	input	path
0	000	s0 s0 s0 s0
7	021	s0 s0 s2 s3
15	120	s0 s1 s1 s3
4	11	s0 s1 s0
5	12	s0 s1 s1
7	21	s0 s2 s3
8	22	s0 s2 s0
13	111	s0 s1 s0 s1
12	110	s0 s1 s0 s0
23	212	s0 s2 s3 s3

What is the meaning of each state?

()

2

З

4

5

6

8

9

Express each of these decimal numbers in ternary notation, and find out what state is reached by the trace they determine

n O s2 s0 2 0 s3 **s**1 0

What is the meaning of each state?

This machine counts ternary mod 4

$$F(q, s) = 3 * q + s \pmod{4}$$

This is a deterministic finitestate automaton, DFA

Formal Definition DFA

Deterministic FSM, deterministic finite automaton $D = (Q,s_0,F,\Sigma,N)$

- · Set of states, Q
- Start state $s_0 \in Q$
- Accepting states $A \subseteq Q$
- Alphabet Σ
- Next state function,
- $\label{eq:product} \begin{array}{l} \bullet \quad q' = N(q,\,s) \\ & \text{where } q,\,q' \in Q \\ & \text{and } s \in \Sigma. \end{array}$

A mathematical definition of a Finite State Machine.

A machine M consists of:

Q: the set of states,

Σ: the alphabet of the machine

- the tokens the machine can process,
- B: the set of beginning or start states of the machine
 A: the set of the machine's accepting states.
 δ: the set of transitions

is a set of (state, symbol, state) triples $\delta \subseteq \mathbf{Q} \times \boldsymbol{\Sigma} \times \mathbf{Q}.$

A finite-state automaton, or machine (FSM) M consists of:

- Q: the set of states,
- $\boldsymbol{\Sigma}$: the alphabet of the machine
 - the tokens the machine can process,
- B: the set of beginning or start states of the machine
- A: the set of the machine's accepting states.

 δ : the set of transitions

is a set of (state, symbol, state) triples $\delta \subseteq Q \times \Sigma \times Q.$

An FSM is a deterministic automaton DFA if it has a single start state $B = \{ s0 \}$ it has a next-state function $F : Q \times \Sigma \rightarrow Q$ such that $\delta = \{ (q, s, F(q,s)) | (q,s) \in Q \times \Sigma \}$

Acceptor Example

Acceptor Example

Accepts strings of 0's and 1's for which the difference between number of 0's and number of 1's in a subsequence is at most 1.