
Informatics 1
Computation and Logic

Entailment
Michael Fourman

1

Exercise 1.2

1 0
0 0

0 1
1 0

1 0
0 1

1 0
1 0

0 0
1 1

1 1
0 0

0 1
0 1

0 0
1 0

0 1
0 0

0 0
0 1

1 0
1 1

1 1
1 0

0 1
1 1

1 1
0 1

0 0
0 0

1 1
1 1

A ^B

A _B A ! B

¬A B

2

Each of the 16 2x2 tables above represents the truth table of a
binary boolean operation.
Label each table with a boolean expression for which it is the truth
table (five tables are already labelled – begin by checking whether
these are consistent).
How many of the binary operations actually depend on both
variables?
How many depend on only one variable?
How many depend on no variables?

3

000

100

010 001

110 101

011

111

5
0* *0

1*** ***1

R A G

{x | G(x) $ R(x) $ A(x)}

6

7

8

if G then R else A
(G?R:A)

✔

✔

✔

✔

𐄂

𐄂
𐄂
𐄂

multiplexer – ITE

(G?R:A)
=

(G⋀R)⋁(¬G⋀A)

(R? :)
current

next

legal states

(R?¬G:A⨁G)
current

next

legal states

R A G

12

(R?A:G)

R’ = R xor A
A’ = not A
G’ = R and A

current

next

13

3-bit m
em

ory

Clock ticks

The next-state logic for sequencing our traffic lights can be
implemented using three different gates. Many different
technologies can be used to implement logic gates, some may use
high and low voltages to represent binary values, others might use
currents, but this logical description of our circuit provides a
common abstract level of design.
In our diagram, the current state is shown in the three coloured
discs. The outputs of the three gates represent the next state. To
make the state transition we need to replace the current state by
the next state.
We need memory. One simple form of memory is a latch, a special
kind of circuit with two inputs, data and clock. When the clock ticks
the current input data value is loaded and stored. The stored value
is output, and does not change until the next tick of the clock.

2 alternative implementations

R’ = R xor A
A’ = G or (R and not A)
G’ = R and A

current

next

R’ = R xor A
A’ = not A
G’ = R and A

In what sense are these
equivalent?

in general,
 not A ≠ G or (R and not A)
for example, if both A and G are true

We have two implementations of the controller, with different
next-state logic for the amber light, A.
A’ = not A
A’ = G or (R and not A).

2 alternative implementations

R’ = R xor A
A’ = G or (R and not A)
G’ = R and A

current

R’ = R xor A
A’ = not A
G’ = R and A

In what sense are these
equivalent?

if the current state is legal then,
 not A = G or (R and not A)

(R ? ¬G : A⨁G) ⊦ ¬A ↔ G ∨ (R ∧ ¬A)

turnstile

Slide 25 (lecture 1) shows an implementation of the traffic light
controller.
We could have designed our logic differently.
For example, letting
A’ = G or (R and not A).
Draw the circuit for this implementation.
Is this a correct implementation of the controller? Explain your
answer.

Entailment
In algebra, we consider expressions with variables,

and write equations to express relationships
between different expressions.

LHS = RHS 

Boolean algebra, with equalities between
expressions, gives us one way to express

relationships between different logical expressions.

If we want to study logical arguments it is more
natural to consider entailments.

LHS ⊦ RHS

Entailment
If we want to study logical arguments it is more

natural to consider entailments.

LHS ⊦ RHS

The entailment is valid if any valuation that makes  
everything on the LHS true, makes the RHS true

⊦ RHS

an entailment with empty LHS is valid iff RHS is a
tautology  

i.e. every valuation makes it true

Is this a valid argument?
• Assumptions:

 If I am clever then I will pass
 If I will pass then I am clever,
 Either I am clever or I will pass

• Conclusion:
 I am clever and I will pass

?
C → P, P → C, C ⋁ P ⊢ C ⋀ P

18

Use the abbreviations C (I am clever) and P (I will pass). We argue
as follows: The first two assumptions tell us that C ↔ P, so the truth

value of C is equal to the truth value of P. The third assumption
tells us that at least one of them is true, so both must be.
(If we interpret `or’ in the third assumption as xor, then the
assumptions are inconsistent.)

Is this a valid argument?
• Assumptions:

If the races are fixed or the gambling houses
are crooked, then the tourist trade will decline.
If the tourist trade declines then the police
force will be happy.
The police force is never happy.

• Conclusion:
 The races are not fixed

19

20

• Assumptions:
If the races are fixed or the gambling houses are crooked, then the
tourist trade will decline.
If the tourist trade declines then the police force will be happy.
The police force is never happy.

• Conclusion:
 The races are not fixed

RF ⋁ GC → TT, TT → PH, ¬PH ⊢ ¬RF

a deduction

the deduction is summarised in an entailment

Here is a deduction, or proof. This sets out an argument, so that
we can review how the steps fit together. Each line represents a
simple step in the argument: we check that, if the propositions
above the line are true then the conclusion below the line is true.
The only propositions here that are not conclusions are our
assumptions. So, if we assume the assumptions are true, then,
working downwards, we see that each conclusion is true. The races
are not fixed. The deduction shows that the entailment is valid.
RF The races are fixed.
GC The gambling houses are crooked.
TT The tourist trade declines.
PH The police force is happy.

