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Each of the 16 2x2 tables above represents the truth table of a 
binary boolean operation.  
Label each table with a boolean expression for which it is the truth 
table (five tables are already labelled – begin by checking whether 
these are consistent). 
How many of the binary operations actually depend on both 
variables? 
How many depend on only one variable? 
How many depend on no variables? 
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R A G

{x | G(x) $ R(x) $ A(x)}
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if G then R else A
(G?R:A)

✔

✔

✔

✔

𐄂

𐄂
𐄂
𐄂



multiplexer – ITE

(G?R:A)
=

(G⋀R)⋁(¬G⋀A)
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(R?¬G:A⨁G)
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R A G
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(R?A:G)



R’ = R xor A
A’ =   not A
G’ = R and A

current

next
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3-bit m
em

ory

Clock ticks

The next-state logic for sequencing our traffic lights can be 
implemented using three different gates. Many different 
technologies can be used to implement logic gates, some may use 
high and low voltages to represent binary values, others might use 
currents, but this logical description of our circuit provides a 
common abstract level of design. 
In our diagram, the current state is shown in the three coloured 
discs. The outputs of the three gates represent the next state. To 
make the state transition we need to replace the current state by 
the next state. 
We need memory. One simple form of memory is a latch, a special 
kind of circuit with two inputs, data and clock. When the clock ticks 
the current input data value is loaded and stored. The stored value 
is output, and does not change until the next tick of the clock. 



2 alternative implementations

R’ = R xor A
A’ = G or (R and not A)
G’ = R and A

current

next

R’ = R xor A
A’ =   not A
G’ = R and A

In what sense are these 
equivalent?

in general, 
   not A ≠ G or (R and not A)
for example, if both A and G are true

We have two implementations of the controller, with different 
next-state logic for the amber light, A. 
A’ = not A 
A’ = G or (R and not A).  



2 alternative implementations

R’ = R xor A
A’ = G or (R and not A)
G’ = R and A

current

R’ = R xor A
A’ =   not A
G’ = R and A

In what sense are these 
equivalent?

if the current state is legal then, 
   not A = G or (R and not A)

(R ? ¬G : A⨁G) ⊦ ¬A ↔ G ∨ (R ∧ ¬A)

turnstile

Slide 25 (lecture 1) shows an implementation of the traffic light 
controller. 
We could have designed our logic differently.  
For example, letting 
A’ = G or (R and not A).  
Draw the circuit for this implementation. 
Is this a correct implementation of the controller? Explain your 
answer.



Entailment
In algebra, we consider expressions with variables, 

and write equations to express relationships 
between different expressions. 

LHS = RHS 

Boolean algebra, with equalities between 
expressions, gives us one way to express 

relationships between different logical expressions. 

If we want to study logical arguments it is more 
natural to consider entailments. 

LHS ⊦ RHS



Entailment
If we want to study logical arguments it is more 

natural to consider entailments. 

LHS ⊦ RHS 

The entailment is valid if any valuation that makes  
everything on the LHS true, makes the RHS true 

⊦ RHS 

an entailment with empty LHS is valid iff RHS is a 
tautology  

i.e. every valuation makes it true



Is this a valid argument?
• Assumptions: 

      If I am clever then I will pass 
      If I will pass then I am clever, 
      Either I am clever or I will pass 

• Conclusion: 
      I am clever and I will pass 

? 
C → P, P → C, C ⋁ P ⊢ C ⋀ P
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Use the abbreviations C  (I am clever) and P (I will pass). We argue 
as follows: The first two assumptions tell us that C ↔ P, so the truth 

value of C is equal to the truth value of P. The third assumption 
tells us that at least one of them is true, so both must be.  
(If we interpret `or’ in the third assumption as xor, then the 
assumptions are inconsistent.)



Is this a valid argument?
• Assumptions: 

If the races are fixed or the gambling houses 
are crooked, then the tourist trade will decline.  
If the tourist trade declines then the police 
force will be happy.  
The police force is never happy. 

• Conclusion: 
      The races are not fixed
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• Assumptions: 
If the races are fixed or the gambling houses are crooked, then the 
tourist trade will decline.  
If the tourist trade declines then the police force will be happy.  
The police force is never happy. 

• Conclusion: 
      The races are not fixed

RF ⋁ GC → TT, TT → PH, ¬PH ⊢ ¬RF 

a deduction

the deduction is summarised in an entailment

Here is a deduction, or proof. This sets out an argument, so that 
we can review how the steps fit together. Each line represents a 
simple step in the argument: we check that, if the propositions 
above the line are true then the conclusion below the line is true. 
The only propositions here that are not conclusions are our 
assumptions. So, if we assume the assumptions are true, then, 
working downwards, we see that each conclusion is true. The races 
are not fixed. The deduction shows that the entailment is valid. 
RF The races are fixed. 
GC The gambling houses are crooked.  
TT The tourist trade declines.  
PH The police force is happy. 


