
Informatics 1: Computation and Logic by Michael Paul Fourman is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Creative Commons License

Informatics 1 
Computation and Logic

Lecture 19 
Logic: The Big Ideas



A formal language, without the vagueness 
and ambiguity of natural language

Syntax: 
expressions are built up from atomic 
propositions using logical connectives 

 ∧∨¬→ 
expressions are trees, with atomic 

propositions as leaf nodes and other nodes 
labelled with connectives

→

A

¬∧

B

A ∧ B → ¬C
C

precedence 
¬ 
∧ 
∨ 
→ 
⬌



A formal language, without the vagueness 
and ambiguity of natural language

Semantics: 
the truth value expressions is built up 
“compositionally” from the truth values of its 
atomic propositions using logical operators

→

A

¬∧

B

A ∧ B → ¬C
C

∧ →A ¬A

A ∧ B → ¬C
A ∧ B → ¬C



a deduction  
rule 

Formal Inference 

proofs are built from assumptions using sound rules 
proofs are trees, with assumptions as leaves, and 
other nodes labelled with instances of rules

A→B   ¬B
¬A

an entailment 
A→B, ¬B ⊢ ¬A



cut rule  
a rule for composing proofs 

A→B, B→C, ¬C ⊢ ¬A

a proof 

Formal Inference 

proofs are built from assumptions using sound rules 
proofs are trees, with assumptions as leaves, and 
other nodes labelled with instances of rules

A→B   ¬B
¬A

A→B, ¬B ⊢ ¬A
B→C   ¬C

B→C, ¬C ⊢ ¬B

?
(A→B)→(A→C) ⊢ A → (B→C)



A→B, ¬B ⊢ ¬A       B→C, ¬C ⊢ ¬B 
  

A→B, B→C, ¬C ⊢ ¬A 

A→B, B→C ⊢ ¬C → ¬A

a proof 

Natural Deduction 
one natural way to prove A→B is to assume A and prove B

A→B   ¬B
¬A

B→C   ¬C

a proof? 

A→B   ¬B
¬C →¬A

B→C   ¬C

→ introduction  
a rule of inference 

Γ, X ⊢ Y 
Γ ⊢ X→Y



Natural Deduction 
one natural way to prove X→Y is to assume X and prove Y 
and if we can prove X→Y then from X we can infer Y

A,B ⊢ B    (A→B)→(A→C) ⊢ (A→B)→(A→C)                     .                                                         
B ⊢ A→B   A→B, (A→B)→(A→C) ⊢ A→C       A→C ⊢ A→C 

B, (A→B)→(A→C) ⊢ A→C                              A→C, A ⊢C 
(A→B)→(A→C), A, B ⊢ C 
(A→B)→(A→C), A ⊢ B→C 

(A→B)→(A→C) ⊢ A → (B→C)

→ introduction & elimination 
a 2-way rule of inference 

Γ, X ⊢ Y 
Γ ⊢ X→Y

The proofs may be natural, but sometimes they are hard to find!



Gentzen’s idea
Instead of just entailments,  Γ ⊢ X   
(where X is an expression and Γ is a finite set of expressions) 

allow sequents, Γ ⊢ Δ 
(where both Γ and Δ are finite sets of expressions) 

Of course, every entailment ‘is’ a sequent 
(where Δ is a singleton) 

but the sequent calculus is much  
simpler than natural deduction

�, A ` �, A
(I)

�, A,B ` �

�, A ^B ` �
(^L) � ` A,B,�

� ` A _B,�
(_R)

�, A ` � �, B ` �

�, A _B ` �
(_L) � ` A,� � ` B,�

� ` A ^B,�
(^R)

� ` A,� �, B ` �

�, A ! B ` �
(! L)

�, A ` B,�

� ` A ! B,�
(! R)

� ` A,�

�,¬A ` �
(¬L) �, A ` �

� ` ¬A,�
(¬R)



The diagram shows a river, a road, an 
island, and two bridges that can open to 
let ships pass. 
Ships can pass from West to East  only if at 
least one of the bridges is open. 
Cars can pass from North to South only if 
both bridges are closed.

N

S

W E

How does this relate to 
de Morgan’s Law?

A

B



Draw a graph showing  
the paths across the 
bridges from  
North to South.

N

S

In each case, the bridges 
correspond to edges of 

the graph.

Draw a graph showing  
the paths under the 
bridges from West to 

East.

What is the logical 
relationship between the 

two graphs?
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We can express many combinatorial problems in propositional 
logic 

(eg Sudoku, but also more practical problems, such as circuit design) 

We can use resolution to check whether a set of clauses is 
consistent. 

If we can derive the empty clause the set is inconsistent, and 
we can invert the proof to produce a refutation tree 

If we cannot derive the empty clause we can construct a 
satisfying valuation from the failed attempt to prove a 

contradiction  
Generating all the resolvants takes space and time



We can express many combinatorial problems in propositional 
logic 

(eg Sudoku, but also more practical problems) 

We can search for solutions to a set of constraints expressed in 
propositional logic 

We convert the problem to clausal form 
and check partial valuations V against our constraints 

if V contradicts any clauses our search must backtrack. 
Checking these potential solutions costs time and space 

We can narrow the search by unit propagation: 
identifying literals whose siblings are all falsified,  

and making them true 
Keeping track of unit literals takes time



The search for solutions to a set of constraints 

We convert the problem to clausal form 
and check partial valuations V against our constraints 

if V contradicts any clauses our search must backtrack. 
Checking these potential solutions costs time and space 

We speed up the search by watching one or two literals in 
each clause and checking whether we can maintain an 

invariant  

for each clause,  
if any watched literal is false then some watched literal is true

if we cannot maintain the invariant we must backtrack 

if we watch two literals, then unit propagation is included in the 
procedure we use to maintain the invariant


