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⊥ ≤ ⊤ 

for booleans 
A → B  = ⊤ 

iff 
A ≤ B



S

R

Q

P

⊤

⊥

If we have a chain of n-1 implications 
between n variables 

we can draw the line in n+1 places 
making any number, from 0 to n, 

of these variables true.
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If some of the variables 
are negated we can do 
the same (but making 
the negated variables 

false when they fall 
above the line and true 
when they fall below)
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If a variable appears 
together with its 

negation, we have to 
draw the line between 

them.  

Here, P must be true. 

(¬P → P) →P 
is a tautology
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If a variable appears 
together with its 

negation, we have to 
draw the line between 

them.  

Here, R must be false. 

(R → ¬R) →¬R 
is a tautology
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The same trick works if 
our implications form a 

partial order. 
But we have more 

options since we can 
draw a wavy line. ¬W

VThe arrow rule says that, 
whenever our line cuts an 
arrow, then the head must 
be on the side of true and 
the tail on the side of false.
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The same trick works if 
our implications form a 

partial order. 
But we have more 

options since we can 
draw a wavy line. 

Not all of the valid truth 
assignments are 

represented in this 
diagram. 

How many are missing? 

¬W

V



Clausal Form
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Clausal form is a set of sets of literals 
{ {¬A,C}, {¬B,D}, {¬E,B}, {¬E,A}, {A,E}, {E,B},{¬B, ¬C, ¬D} } 

A (partial) truth assignment makes a clause true  
iff it makes at least one of its literals true  

(so it can never make the empty clause {} true) 

A (partial) truth assignment makes a clausal form true  
iff it makes all of its clauses true 

( so the empty clausal form {} is always true ).



A clausal form with at most two literals per clause. 

Corresponds to a conjunction of implications. 

We can draw the directed graph and count the 
satisfying valuations.  

When 3 or more are involved,  
satisfaction gets complicated. 

In general, we must search for satisfaction. 

2-SAT
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Naive search



Naive search

function Naive(V, Φ) 
   if V ⊨ ¬Φ then return false; 
   if V ⊨  Φ¬then return true; 
   otherwise, 
      choose an A mentioned in Φ  
               but not mentioned in V 
        return Naive(V^A, Φ)  
                  ||  
                   Naive(V^¬A, Φ) 

(call Naive(∅, Φ))
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function Naive(V, Φ) 
   if V ⊨ ¬Φ then return false; 
   if V ⊨  Φ¬then return true; 
   if V, C ⊨ X,  
         where X is literal and clause C ∈  Φ 
          return Naive(V^X, Φ) 
   otherwise, 
      choose an A mentioned in Φ  
               but not mentioned in V 
        return Naive(V^A, Φ)  
                  ||  
                   Naive(V^¬A, Φ) 

(call Naive(∅, Φ))

Davis Putnam Logemann Loveland (DPLL)
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Unit Propagation



Davis Putnam Logemann Loveland (DPLL) 
implementation - add V to Φ 

unit propagation

function DPLL(Φ) 
   if Φ is a consistent set of literals 
       then return true; 
   if Φ contains an empty clause 
       then return false; 
   for every unit clause l in Φ 
      Φ ← unit-propagate(l, Φ); 
     l ← choose-literal(Φ); 
   return DPLL(Φ ∪ {l}) or DPLL(Φ ∪ {not(l)});
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Clausal form is a set of sets of literals 

X = { X0, X1, … , Xn-1 } 

Resolution rule for clauses
X Y where ¬A ∈ X, A ∈ Y

(X ⋃ Y) \  { ¬A, A } 

If either X or Y is a singleton then this is just unit propagation. 

So, resolution is a generalisation of unit propagation. 
Search is no longer needed
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Premises

Conclusion

Any assignment of truth values that 
makes all the premises true 

will make the conclusion true.

The conclusion follows from the premises

A valid  
inference
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Any assignment of truth values that 
makes the conclusion false will make  

at least one of the premises false.
For any valid  

inference
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Conclusion

If some assignment  
XYZ of values for ABC  

makes the conclusion false  
then the assignments XYZD and XYZD̅   

each make one or other of the two premises false. 

A special property  
of this inference

¬B⋁¬C
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We keep adding clauses obtained by resolution. 
Davis Putnam - choose a variable then add all instances. 
Different orders for resolution will give the same results.



Davis Putnam

Take a collection  of clauses. 

For each propositional letter, A 
 For each pair ∊ ⋀ ∊ ⋀ A∊ ⋀ A∊  
 if A return UNSAT 
         if  A is consistent 
return SAT 

Where A A, A 

Heuristic: start with variables that occur seldom.


