NFA and regex

o the Boolean algebra of languages
® non-deterministic machines
® regular expressions

® | formatios 1

School of Informatics, University of Edinburgh

The intersection of two regular
languages is regular

2 ,*";
Run both machines in
parallel?
O Build one machine
0 <o that simulates two
machines running in
0 1 0 1 parallel!
.°.° Keep track of the
1 0 state of each
machine.

i Informatics 1

School of Informatics, University of Edinburgh

The intersection of two regular @
languages is regular @Y

mox
3
0
1
2
0
1
2

Informatics 1
School of Informatics, University of Edinburgh

The intersection of two regular
languages is regular

d

a
a
w
N o
w
[N

4 a2 4000 nE
3
g = W N~ O ER

mo
3
(1]
1
2
0
1
2

L] Informatics 1
School of Informatics, University of Edinburgh

The intersection of two regular
languages is regular

d

a
a
w
N o
w
[N

~ 0 40 20 3
3
g~ WN = OER

mo
3
(1]
1
2
0
1
2

L] Informatics 1
School of Informatics, University of Edinburgh

The regular languages A ¢ 3* form a
Boolean Algebra

« Since they are closed under intersection
and complement.

i Informatics 1

School of Informatics, University of Edinburgh

Determinism

Can always convert to an equivalent DFA for For this machine

which every state has exactly one transition .

leaving the state for each input symbol. there is exaC“Y one
trace for each input

« Proof string

Add a new “black hole” state,

For every pair (s, a) for which there is no state t with a transition
T(s, a, t), add a transition T(s, a, e).

This includes a transition T(e, a,) for each a € Z . You cannot
escape from the black hole.

The black hole e is not an accepting state.
This machine accepts the same language as the original.

i Informatics 1

School of Informatics, University of Edinburgh

Non Determinism @

In a non-deterministic machine (NFA), each state ma?/ have
any number of transitions with the same input symbol,
leaving to different successor states.

o 1 0

— O ©
1V

o Informatics 1
School of Informatics, University of Edinburgh

Non Determinism @

In a non-deterministic machine (NFA), each state ma?/ have
any number of transitions with the same input symbol,
leaving to different successor states.

o 1 0

— O ©
1V

pot
O

-20

o Informatics 1
School of Informatics, University of Edinburgh

Non Determinism @

We can simulate a non-deterministic machine using a
deterministic machine — by keeping track of the set of states
the NFA could possibly be in.

0 1 0
—
1

i Informatics 1

School of Informatics, University of Edinburgh

Internal Transitions @

We sometimes add an internal transition € to a non-
deterministic machine (NFA)This is a state change that
consumes no input.

0 1 0
—
1

0 1 0
e
€

i Informatics 1

School of Informatics, University of Edinburgh

<1V

[
< 2
2 v
g

Internal Transitions

We sometimes add internal transitions
—labelled € — to a non-deterministic
machine (NFA).

R <
R

This is a state change that consumes 01
no input. 2 0
It introduces non-determinism in the
observed behaviour of the machine.
0 10

o Informatics 1
School of Informatics, University of Edinburgh

™

NFA single start state

any number of accepting states

™\

bl

S

sequence

™~ RS

sy

Nﬁon R|S
E 8

R S

iteration R*

Demo D

http://ivanzuzak.info/noam/webapps/fsm simulator/

o Informatics 1
School of Informatics, University of Edinburgh

Is there a regular expression for every

FSM?

a b

L —@ O O®
c

b

SEsc@ofo

b

a
L. —@ O ©
c

Let Li be the language
accepted if i is the
accepting state

Lo=¢
Li=Loa
Lo=LiblLoc

Lo=Loablec
Lo=cgablec
Lo=ablc

i Informatics 1

School of Informatics, University of Edinburgh

Is there a regular expression for every

FSM?
L1 =L2b
Lo=LsblLia
Ls=¢elLib
=eclLabb

Lo=(elL2bb)blLzba
=blL:bbblL:ba
=blL2(bbblIba)

i Informatics 1

School of Informatics, University of Edinburgh

Is there a regular expression for every »
FSM? B

Lo=blL2(bbblba) goe

Lo=b (bbb Iba)* '
©

Li=Lb=b(bbblba)*b

Ls=cllabb=¢clb(bbblba)*bb

® | formatios 1
' School of Informatics, University of Edinburgh

20

Arden’s Lemma

If R and S are regular expressions
then the equation
X=R|XS
has a solution X = R S*
If e ¢ L(S) then this solution is unique.
Lo=blL2(bbblba)
Lo=b(bbblba)*

® |nformaics 1
School of Informatics, University of Edinburgh

21

regular expressions

any character is a regexp Kleene *, +
* matches itself
if R and S are regexps, so is RS
¢ matches
a match for R followed by a match for S
if R and S are regexps, so is RIS
¢ matches
any match for R or S (or both)
if Ris a regexp, so is R*

¢ matches Stephen Cole Kleene
any sequence of 0 or more matches for R

1909-
The algebra of regular expressions also includes elements 0 and 1
¢ 0 matches nothing; 1 matches the empty string

regular expressions denote
regular sets

any character a is a regexp Kleene *, +

if R and S are regexs, so is RS

if R and S are regexps, so is RIS

if R is a regexp, so is R*

0

1

o {<a>}
e {rslreRandseS}
* RuS

'{rnlneNandreR
01S=S=S10

* 2 empty set
1S=S=S1
* {<>} singleton empty sequence:

1909-1994.

https://en.wikipedia.org/wiki/Kleene_algebra

Regular Expressions

e using REs to find patterns

e implementing REs using finite state
automata

REs and FSAs

® Regular expressions can be viewed as a
textual way of specifying the structure of
finite-state automata

® Finite-state automata are a way of
implementing regular expressions

® Regular expressions denote regular sets

of strings - each regular set is recognised
by some FSA

Regular expressions

¢ A formal language for specifying text strings

* How can we search for any of these!
*woodchuck
+*woodchucks
*Woodchuck
*Woodchucks

Regular Expressions for
Textual Searches

Who does it?

Everybody:

*Web search engines, CGI scripts

e Information retrieval

«Word processing (Emacs, vi, MSWord)
«Linux tools (sed, awk, grep)

« Computation of frequencies from corpora
*Perl

http://xkcd.com/

OH NO! THE KILLER || BUT T0 FIND THEM WE'D HAVE TO SEARCH
MUST HAVE. ROUOWED) | THROUGH 200 MB GF EMALS LOOKING FOR
HER ON VACATION! || SMETHING FORMATTED LIKE AN ADORESS!

s

T KNOWREGULAR
EXPRESSIONS .

B

Regular Expression

* Regular expression: formula in algebraic
notation for specifying a set of strings

« String: any sequence of alphanumeric characters

—letters, numbers, spaces, tabs, punctuation marks

* Regular expression search

—pattern: specifying the set of strings we want to search
for

—corpus: the texts we want to search through

Basic Regular Expression Patterns

* Case sensitive: d is not the same as D
 Disjunctions: [dD] [0123456789]

« Ranges: [0-9] [A-2Z]

* Negations: [*Ss] (only when " occurs immediately after [)
« Optional characters: 2 and *

e Wild: .

« Anchors: ~ and $, also \b and \B

« Disjunction, grouping, and precedence: | (pipe)

Caret for negation, ", or anchor

RE Match (single characters) Example Patterns Matched
["A-2Z] not an uppercase letter “Oyfhn pripetchik”

[*Ss] neither ‘S’ nor ‘s’ “I have no exquisite reason for’t”
[“\.] not a period “our resident Djinn”

[e/] either ‘e’ or <’ “look up ~ now”

a”b the pattern ‘a”b’ “look up a’b now”

AT T at the beginning of a line ~ “The Dow Jones closed up one”

Optionality and Counters

RE Match Example Patterns Matched
woodchucks? woodchuck or woodchucks “The woodchuck hid”
colou?r color or colour “comes in three colours”
(he) {3} exactly 3 “he”’s “and he said hehehe.”

? zero or one occurrences of previous char or expression
* zero or more occurrences of previous char or expression
+ one or more occurrences of previous char or expression
{n} exactly n occurrences of previous char or expression
{n, m} between n to m occurrences

{n, } atleast n occurrences

Wild card © .’

RE Match Example Patterns Matched
beg.n any char between beg and n begin, beg’n, begun
big.*dog find lines where big and the big dog bit the little

dog occur the big black dog bit the

any character (but newline)
* previous character or group, repeated 0 or more time

+ previous character or group, repeated 1 or more time
? previous character or group, repeated 0 or 1 time

A start of line

$ end of line

..] any character between brackets

A..] any character not in the brackets

a-z] any character between a and z

\ prevents interpretation of following special char
\| or

\w word constituent

\b word boundary

\{38\} previous character or group, repeated 3 times
\{3,\} previous character or group, repeated 3 or more times
\{3,6\} previous character or group, repeated 3 to 6 times

