
cl
Informatics 1
School of Informatics, University of Edinburgh

NFA and regex

• the Boolean algebra of languages

• non-deterministic machines

• regular expressions

1

Informatics 1
School of Informatics, University of Edinburgh

The intersection of two regular
languages is regular

2

Run both machines in
parallel?

Build one machine
that simulates two

machines running in
parallel!

Keep track of the
state of each

machine.

1

1

1

0 0
0 2

1

0

1

1 10

0

0

Informatics 1
School of Informatics, University of Edinburgh

The intersection of two regular
languages is regular

3

1

0

0

1

1

1 10

0

0

1

0

0

1

0

10

20

100

11

0

0

1

11

21

01

1

|| =

0

0

1

2

10

mod
3

mod
2

0 1

3 2 3 2

0 0 0 0 1 1
1 0 2 0 0 1
2 0 1 0 2 1
0 1 0 0 1 1
1 1 2 0 0 1
2 1 1 0 2 1

1

Informatics 1
School of Informatics, University of Edinburgh

The intersection of two regular
languages is regular

4

1

1 10

0

0|| =

1

0

0

1

0

4

2

10

11

0

0

1

1

5

3

1

0

mod
3

mod
2

mod
6

0 1
3 2 6 3 2 6

0 0 0 0 0 0 1 1 1
1 0 4 2 0 2 0 1 3
2 0 2 1 0 4 2 1 5
0 1 3 0 0 0 1 1 1
1 1 1 2 0 2 0 1 3
2 1 5 1 0 4 2 1 5

1

0

0

1
0

1

2

10

1

Informatics 1
School of Informatics, University of Edinburgh

The intersection of two regular
languages is regular

5

1

1 10

0

0|| =

1

0

0

1

0

4

2

10

11

0

0

1

1

5

3

1

0

mod
3

mod
2

mod
6

0 1
3 2 6 3 2 6

0 0 0 0 0 0 1 1 1
1 1 1 2 0 2 0 1 3
2 0 2 1 0 4 2 1 5
0 1 3 0 0 0 1 1 1
1 0 4 2 0 2 0 1 3
2 1 5 1 0 4 2 1 5

1

0

0

1
0

1

2

10

1

Informatics 1
School of Informatics, University of Edinburgh

The regular languages A ⊆ Σ* form a
Boolean Algebra

• Since they are closed under intersection
and complement.

6

Informatics 1
School of Informatics, University of Edinburgh

Determinism

• Proof

Add a new “black hole” state, ●
For every pair (s, a) for which there is no state t with a transition
T(s, a, t), add a transition T(s, a, ●).

This includes a transition T(●, a, ●) for each a ∈ Σ . You cannot
escape from the black hole.
The black hole ● is not an accepting state.

This machine accepts the same language as the original.

7

For this machine
there is exactly one
trace for each input

string

Can always convert to an equivalent DFA for
which every state has exactly one transition
leaving the state for each input symbol.

Informatics 1
School of Informatics, University of Edinburgh

Non Determinism
In a non-deterministic machine (NFA), each state may have
any number of transitions with the same input symbol,
leaving to different successor states.

8

0 1

1

1

0 0

2 0 1

0 0 0,1

1 2

2

Informatics 1
School of Informatics, University of Edinburgh

Non Determinism
In a non-deterministic machine (NFA), each state may have
any number of transitions with the same input symbol,
leaving to different successor states.

9

0 1

1

1

0 0

2
0 1

0 0 0,1
1 2
2

0,1 0,2 0,1
0,2 0 0,1

0 0,1

010

1
1

0

0,2

Informatics 1
School of Informatics, University of Edinburgh

Non Determinism
We can simulate a non-deterministic machine using a
deterministic machine – by keeping track of the set of states
the NFA could possibly be in.

10

0 1

1

1

0 0

2
0 1

0 0 0,1
1 2
2

0,1 0,2 0,1
0,2 0 0,1

0 0,1

010

1
1

0

0,2

Informatics 1
School of Informatics, University of Edinburgh

Internal Transitions
We sometimes add an internal transition ε to a non-
deterministic machine (NFA)This is a state change that
consumes no input.

11

0 1

10 0

2

0 1 ε
0 0 1

1 2 0

2

ε

0 1

1

1

0 0

2

Informatics 1
School of Informatics, University of Edinburgh

Internal Transitions
We sometimes add internal transitions
– labelled ε – to a non-deterministic
machine (NFA).
This is a state change that consumes
no input.
It introduces non-determinism in the
observed behaviour of the machine.

12

0 1

10 0

2

0 1 ε
0 0 1
1 2 0
2

ε

0ε* 1ε*
0 0 1,0
1 2
2

NFA single start state
any number of accepting states

S

13

R

sequence
RS

ε

14

SR
ε

alternation R|S

ε

ε

ε

15

SR

ε

ε

iteration R*

ε

16

R

ε
ε

Informatics 1
School of Informatics, University of Edinburgh

Demo
http://ivanzuzak.info/noam/webapps/fsm_simulator/

17

0 1

1

1

0 0

2
0 1

0 0 0,1
1 2
2

0,1 0,2 0,1
0,2 0 0,1

0 0,1

010

1
1

0

0,2

Informatics 1
School of Informatics, University of Edinburgh

Is there a regular expression for every
FSM?

18

0 1

a b

2

c

Let Li be the language
accepted if i is the
accepting state

L0 = ε
L1 = L0 a
L2 = L1 b | L0 c
L2 = L0 a b | ε c
L2 = ε a b | ε c
L2 = a b | c

0 1

a b

2

c

0 1

a b

2

c

L0

L1

L2

Informatics 1
School of Informatics, University of Edinburgh

Is there a regular expression for every
FSM?

19

L1 = L2 b
L2 = L3 b | L1 a
L3 = ε | L1 b

2

3

1 b

b

a

b

= ε | L2 b b
L2 = (ε | L2 b b) b | L2 b a

= b | L2 b b b | L2 b a
= b | L2 (b b b | b a)

Informatics 1
School of Informatics, University of Edinburgh

Is there a regular expression for every
FSM?

20

2

3

1 b

b

a

b

L2 = b | L2 (b b b | b a)

L2 = b (b b b | b a)*

L1 = L2 b = b (b b b | b a)* b

L3 = ε | L2 b b = ε | b (b b b | b a)* bb

Informatics 1
School of Informatics, University of Edinburgh

Arden’s Lemma

21

If R and S are regular expressions
then the equation

X = R | X S
has a solution X = R S*

If ε ∉ L(S) then this solution is unique.
L2 = b | L2 (b b b | b a)
L2 = b (b b b | b a)*

• any character is a regexp

• matches itself

• if R and S are regexps, so is RS
• matches

a match for R followed by a match for S

• if R and S are regexps, so is R|S

• matches
any match for R or S (or both)

• if R is a regexp, so is R*

• matches
any sequence of 0 or more matches for R

• The algebra of regular expressions also includes elements 0 and 1

• 0 matches nothing; 1 matches the empty string

regular expressions

1909-1994

Kleene *, +

*+

Stephen Cole Kleene

• any character a is a regexp

• {<a>}

• if R and S are regexs, so is RS
• { r s ❘ r ∈ R and s ∈ S }

• if R and S are regexps, so is R|S

• R ∪ S
• if R is a regexp, so is R*

• { r
n
 ❘ n ∈ N and r ∈ R

• 0 0 | S = S = S | 0

• ∅ empty set

• 1 1 S = S = S 1

• {<>} singleton empty sequence:

regular expressions denote

regular sets

1909-1994

Kleene *, +

*+

Stephen Cole Kleene

https://en.wikipedia.org/wiki/Kleene_algebra

Regular Expressions

• using REs to find patterns

• implementing REs using finite state
automata

REs and FSAs

• Regular expressions can be viewed as a
textual way of specifying the structure of
finite-state automata

• Finite-state automata are a way of
implementing regular expressions

• Regular expressions denote regular sets
of strings - each regular set is recognised
by some FSA

Regular expressions
• A formal language for specifying text strings
• How can we search for any of these?
!woodchuck
!woodchucks
!Woodchuck
!Woodchucks

Regular Expressions for
Textual Searches

Who does it?

Everybody:
• Web search engines, CGI scripts
• Information retrieval
• Word processing (Emacs, vi, MSWord)
• Linux tools (sed, awk, grep)
• Computation of frequencies from corpora
• Perl

http://xkcd.com/

Regular Expression

• Regular expression: formula in algebraic
notation for specifying a set of strings

• String: any sequence of alphanumeric characters

– letters, numbers, spaces, tabs, punctuation marks

• Regular expression search
–pattern: specifying the set of strings we want to search

for

–corpus: the texts we want to search through

Basic Regular Expression Patterns

• Case sensitive: d is not the same as D
• Disjunctions: [dD] [0123456789]
• Ranges: [0-9] [A-Z]
• Negations: [^Ss] (only when ^ occurs immediately after [)
• Optional characters: ? and *
• Wild : .
• Anchors: ^ and $, also \b and \B
• Disjunction, grouping, and precedence: | (pipe)

RE Match (single characters) Example Patterns Matched

[^A-Z] not an uppercase letter “Oyfn pripetchik”

[^Ss] neither ‘S’ nor ‘s’ “I have no exquisite reason for’t”

[^\.] not a period “our resident Djinn”

[e/] either ‘e’ or ‘^’ “look up ˆ now”

a^b the pattern ‘a^b’ “look up aˆb now”

^T T at the beginning of a line “The Dow Jones closed up one”

Caret for negation, ^ , or anchor

Optionality and Counters
RE Match Example Patterns Matched
woodchucks? woodchuck or woodchucks “The woodchuck hid”

colou?r color or colour “comes in three colours”

(he){3} exactly 3 “he”s “and he said hehehe.”

? zero or one occurrences of previous char or expression
* zero or more occurrences of previous char or expression
+ one or more occurrences of previous char or expression
{n} exactly n occurrences of previous char or expression
{n, m} between n to m occurrences
{n, } at least n occurrences

Wild card ‘ .’

RE Match Example Patterns Matched

beg.n any char between beg and n begin, beg’n, begun
big.*dog find lines where big and the big dog bit the little
 dog occur the big black dog bit the

 . any character (but newline)
 * previous character or group, repeated 0 or more time
 + previous character or group, repeated 1 or more time
 ? previous character or group, repeated 0 or 1 time
 ^ start of line
 $ end of line
 [...] any character between brackets
 [^..] any character not in the brackets
 [a-z] any character between a and z
 \ prevents interpretation of following special char
 \| or
 \w word constituent
 \b word boundary

 \{3\} previous character or group, repeated 3 times
 \{3,\} previous character or group, repeated 3 or more times
 \{3,6\} previous character or group, repeated 3 to 6 times

