
cl
Finite-State Machines 
(Automata) lecture 12

• a simple form of computation

• used widely

• one way to find patterns

• one way to describe reactive systems

1



Informatics 1 
School of Informatics, University of Edinburgh

2

Reactive Systems

• Wait to receive an input 
• Respond with: 

an output (possibly changing to a new state) 
or 
change to new state without output 

• Response depends on (finite) history



Informatics 1 
School of Informatics, University of Edinburgh

3

Finite State Machines

• A conceptual tool for modelling reactive 
systems. 

• Not limited to software systems. 
• Used to specify required system behaviour in a 

precise way. 
• Then implement as software/hardware (and 

perhaps verify behaviour against FSM).



Informatics 1 
School of Informatics, University of Edinburgh

4

Formal Definition DFA

• Set of states, Q   
• Initial state s0∈Q 
• Accepting states  F ⊆ Q 
• Alphabet Σ 
• Next state function, t′ = N(t, a) 

where t, t′ ∈ Q  
and a ∈ Σ.

Deterministic FSM, deterministic finite automaton 
D = (Q,s0,F,Σ,N)

t tʹ

a

A formal mathematical 
definition of a finite state 
machine



Informatics 1 
School of Informatics, University of Edinburgh

5

Formal Definition NFA

• Set of states, Q   
• Initial state s0∈Q 
• Accepting states  F ⊆ Q 
• Alphabet Σ 
• Transition relation, T(s, a, t) 

where s, t ∈ Q  
and a ∈ Σ ∪ {ε}.

Non-deterministic FSM,  
non-deterministic finite automaton 
N = (Q,s0,F,Σ,T)

s t

a

a

A formal mathematical 
definition of a finite state 
machine



Informatics 1 
School of Informatics, University of Edinburgh

6

Formal Definition

• Set of states, Q   
• Initial state s0∈Q 
• Accepting states  F ⊆ Q 
• Alphabet Σ 
• T(s, a, t) iff t = N(s, a)

Deterministic FSM,  
D = (Q,s0,F,Σ,N)

s t

a

Non-deterministic FSM,  
N = (Q,s0,F,Σ,T)

Every DFA is a NFA

A formal mathematical 
definition of a finite state 
machine



Informatics 1 
School of Informatics, University of Edinburgh

7

Deterministic FSMs

Many authors give an informal definition of 
deterministic 

• all states have no more than one transition leaving 
the state for each input symbol. 

Formal definition says, exactly one state … 
• We consider the informal presentation to include an 

implicit “black hole”, or “sink” state, from which there 
is no escape. 

• Where there is no explicit transition for a symbol, it 
takes us to the black hole.



Informatics 1 
School of Informatics, University of Edinburgh

8

Formal Definition

s1 s2
i/o

state transition next state

FSM transducer model, M, consists of:
• Set of states, Q   
• Initial state s0∈Q 
• Alphabets of input and output symbols i/o 
• Transition relation, T(s, a, t) where s, t ∈ Q  

and a ∈ (In ∪ {ε}) x (Out ∪ {ε}).



Informatics 1 
School of Informatics, University of Edinburgh

9

Parking Meter Example

Σ = {m,t,r}     money, ticket request, refund request 
Λ = {p,d}       print ticket, deliver refund 
Q = {1,2} 
T = {(1,t/ε,1), (1,r/ε,1), (1,m/ε,2), (2,t/p,1), (2,r/d,1), (2,m/ε,2)}

1 2m/

t/p

r/d

m/

t/

r/

This is a transducer FSM because it has some outputs.



Informatics 1 
School of Informatics, University of Edinburgh

10

FSM Traces

• Finite sequence of state and transition labels, 
starting, alternating, and ending with a state:  
[s0, i1/o1, s1, i2/o2, s2, … sn-1, in/on, sn] 

• s0 is the initial state. 
• Each [si-1, ii/oi, si] subsequence must appear 

as a transition in T



Informatics 1 
School of Informatics, University of Edinburgh

11

Parking Meter Trace Example

1 2m/

t/p

r/d
m/

t/

r/

[1, m/, 2, t/p, 1] 
[1, m/, 2, m/, 2, r/d, 1] 
[1, m/, 2, t/p, 1, m/, 2, m/, 2] 
[1, t/, 1, t/, 1, m/, 2] 
… etc

Behaviour of FSM is the set of all possible traces. 
This is not necessarily a finite set.

Traces include:



Informatics 1 
School of Informatics, University of Edinburgh

12

Determinism

• In a deterministic FSM, all states have no 
more than one transition leaving the state 
for each input symbol. 

• In a non-deterministic FSM, states may 
have more than one transition leaving to 
different successor states for the same 
input symbol. 

• Sometimes non-deterministic FSMs are 
easier to define. 

• Can always convert from a non-
deterministic to a deterministic FSM.

s1

s2
i1/o1

s3i2/o2

s1

s2
i/o1

s3i/o2

i1 ≠ i2



Informatics 1 
School of Informatics, University of Edinburgh

13

Determinism and Traces

A FSM, M, is deterministic if for every string x∈Σ* 
there is at most one trace for x in M 
(where Σ* is the set of all strings in alphabet of M)

1 2
a

a

1 2
a

b

[1,a,1,a,2] 
[1,a,1,a,1]

[1,b,1,a,2] 
[1,b,1,b,1]

Sequence Trace
ba 
bb

aa 
aa

Sequence Trace

non-deterministic  (choice) deterministic  (no choice)



Informatics 1 
School of Informatics, University of Edinburgh

14

Acceptors

• Empty output alphabet (all outputs are ε) 
• Some states marked as accepting.

Definition as before but:

i
acceptor state

Input sequence is accepted if there is a trace from the 
initial state to an acceptor state.

Language of the FSM is the set of sequences it accepts.



Informatics 1 
School of Informatics, University of Edinburgh

15

Acceptor Example

1 32

4

number of 1’s is 
one larger than 
number of 0’s

number of 0’s is 
one larger than 
number of 1’s

number of 1’s and 
number of 0’s 
are the same

0
0

0

0 1

1
1

1

Black hole; we can  
never escape from  
here to an acceptor 

Accepts strings of 0’s and 1’s for which the difference between 
number of 0’s and number of 1’s in a subsequence is at most 1.



Informatics 1 
School of Informatics, University of Edinburgh

16

Language of a Deterministic 
FSM Acceptor

Set of strings whose (unique) traces end in an 
accepting state (sa∈F)

1 2
a

bAccepts: ba 
               bba 
               bbba 
               …etc

Rejects: aba  (no trace) 
              bbb  (trace but not ending in accepting state)


