

Reactive Systems

2

- Wait to receive an inputRespond with:
 - an output (possibly changing to a new state) or
- change to new state without outputResponse depends on (finite) history

Finite State Machines

3

- A conceptual tool for modelling reactive systems.
- · Not limited to software systems.
- Used to specify required system behaviour in a precise way.
- Then implement as software/hardware (and perhaps verify behaviour against FSM).

A formal mathematical definition of a finite state machine

Non-deterministic FSM, non-deterministic finite automaton $N = (Q,s_0,F,\Sigma,T)$ • Set of states, Q • Initial state $s_0 \in Q$ • Accepting states $F \subseteq Q$	
 Set of states, Q Initial state s₀∈Q Accepting states F⊆Q 	
• Alphabet Σ • Transition relation, T(s, a, t) where s, t $\in Q$ and $a \in \Sigma \cup \{\epsilon\}$.	a t

A formal mathematical definition of a finite state machine

A formal mathematical definition of a finite state machine

Deterministic FSMs

7

Many authors give an informal definition of deterministic

 all states have no more than one transition leaving the state for each input symbol.

Formal definition says, exactly one state ...

- We consider the informal presentation to include an implicit "black hole", or "sink" state, from which there is no escape.
- Where there is no explicit transition for a symbol, it takes us to the black hole.

Formal Definition	
FSM transducer model, M, consists of:	
Set of states, Q	
 Initial state s₀∈Q 	
Alphabets of input and output symbols i/o	
• Transition relation, T(s, a, t) where s, t \in Q	
and $a \in (In \cup \{\epsilon\}) \times (Out \cup \{\epsilon\})$.	
state transition next state	
Informatics 1 School of Informatics, University of Edinburgh	

Parking Meter Example
$\Sigma = \{m, t, r\} \qquad \underline{m}oney, \underline{t}icket request, \underline{r}efund request$ $\Lambda = \{p, d\} \qquad \underline{p}rint \ \underline{t}icket, \underline{d}eliver \ refund$ $Q = \{1, 2\}$ $U = \{1, 2\}$
$I = \{(1, t_{\ell} \epsilon, 1), (1, t_{\ell} \epsilon, 1), (1, m/\epsilon, 2), (2, t_{\ell} p, 1), (2, t_{\ell} n, 1), (2, m/\epsilon, 2)\}$
This is a transducer FSM because it has some outputs.
Informatics 1 School of Informatics, University of Edinburgh

FSM Traces

10

- Finite sequence of state and transition labels, starting, alternating, and ending with a state: $[s_0, i_1/o_1, s_1, i_2/o_2, s_2, \ldots s_{n-1}, i_n/o_n, s_n]$
- s_0 is the initial state.
- + Each $[s_{i\!-\!1},\,i_i\!/o_i,\,s_i]$ subsequence must appear as a transition in ${\rm T}$

Parking Meter Trace Example	
t/ $t/pm/$ 2 $m/$	0 INBC
Traces include: r/ [1, m/, 2, t/p, 1] [1, m/, 2, m/, 2, r/d, 1] [1, m/, 2, t/p, 1, m/, 2, m/, 2] [1, t/, 1, t/, 1, m/, 2] etc	
Behaviour of FSM is the set of all possible traces. This is not necessarily a finite set.	
Informatics 1 School of Informatics, University of Edinburgh	1*

	Ace	cepto	rs		
Definition as	s before bu	ıt:			
Empty or	utput alpha	bet (all	outputs are	e)	
Some sta	ates marke	ed as ac	cepting.		
Input seque initial state t	→ i i i i i i i i i i i i i	→ otor state	acceptor state there is a tra	e from t	he
Language o	f the FSM	is the se	et of sequence	ces it acc	epts.
Informatics 1					-

