
Informatics 1
Computation and Logic

A Traffic-Light Controller
Michael Fourman

@mp4man

1

This course provides a first
glimpse of the deep
connections between
computation and logic. We
will focus primarily on the
simplest non-trivial examples
of logic and computation:
propositional logic and finite-
state machines.
In this first lecture we look at
an example that introduces
some ideas that we will
explore further in later
lectures, and introduce some
notation which should
become more familiar in due
course.

2

Our example is a traffic light
controller, which generates
the cyclic sequence of lights
stipulated in the Highway
Code:

red – red-amber – green –
amber

Cars are permitted to proceed
when the green light shows; in
all other cases they must stop
before the white line, if it is
safe to do so.

red

amber

green

3

A B C D

red iff A or B
amber iff B or D
green iff C

A

D B

C

logic & computation

In this course we will
introduce the tools required
to specify and analyse more
complicated examples of such
systems.
We can describe this simple
example as a machine that
cycles through four states,
with a logical equation for
each light that describes the
set of states in which that light
is on.
“iff” means “if and only if”.
The machine describes a
simple ‘computation’ : start in
state A and cycle through the
four states.
The logical formulae describe
the logic.

Propositional Logic concerns
properties of things

4

big blue triangle

small red disc

For the first part of this
lecture, we consider a very
simple ‘world’, where
everything is either red or
blue, either big or small, and
either a triangle or a disc.
Moreover, there is one, and
only one thing of each type:
only one big blue triangle,
only one small red disc, and
so on …

5
red or disc

There are only four small
things, all shown inn this
diagram.
The diagram also includes two
circles, representing sets of
things.
Each of these sets is defined
by a property.
One represents the set of
small red things, the other
represents the set of small
discs.

6
red or disc

Regions of the diagram
correspond to logical
combinations of properties.

7
red and disc

Regions of the diagram
correspond to logical
combinations of properties

8
not red

9
red xor disc

10

(red or disc) and
not (red and disc)

=
red xor disc

11

If everything is
either red or blue (not red)
and
either small or big (not small)
and
either disc or triangle (not
disc)
then we have 8 = 2 x 2 x 2
possible combinations of
three Boolean properties.

12

The corresponding Venn

diagram has eight regions.

13

red
Each circle corresponds to a
basic proposition.
red
Each circle includes four of the
eight regions

14

disc

Each circle corresponds to a
basic proposition.
disc

15

small Each circle corresponds to a
basic proposition.
small
Each circle includes

16

red or disc
A complex proposition
corresponds to a set of
regions.
red or disc
This example includes six of
the eight regions
The blue triangles, which are
not red and not disc, are
excluded.

17

not (red or disc) iff (not red and not disc)
Augustus de Morgan (1806 - 1871)

A complex proposition
corresponds to a set of
regions.
red or disc
This example includes six of
the eight regions
The blue triangles, which are
not red and not disc, are
excluded.

18

There are 8
regions in the
diagram. How

many subsets of
this set of 8

regions are there?

Given any subset of the eight regions can you
write a complex proposition to which it

corresponds  
(using and, or, and not as connectives)?

Exercise 1.1 A complex proposition
corresponds to a set of
regions.
red or disc
This example includes six of
the eight regions
The blue triangles, which are
not red and not disc, are
excluded.

19

A

D B

C

current

next

A B C D
B C D A

We can draw a state-transition

diagram (shown to the left of
this slide) to describe the
permitted sequence of states,
or give a next-state table
(shown on the right) showing
which next state corresponds
to each current state.

current

next

R

A

G

R0

A0

G0

20

A

D

B

C

current

next

A B C D
B C D A

We can draw a state-transition

diagram (shown to the left of
this slide) to describe the
permitted sequence of states,
or give a next-state table
(shown on the right) showing
which next state corresponds
to each current state.

current

next

R

A

G

R0

A0

G0

21

We can draw a state-transition

diagram (shown to the left of
this slide) to describe the
permitted sequence of states,
or give a next-state table
(shown on the right) showing
which next state corresponds
to each current state.

current

next

R

A

G

R0

A0

G0

R0
= R xorA = R�A

A0
= notA = ¬A

G0
= R andA = R ^A

A ¬A
0 1
1 0

R A R ^A R�A
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

22

We can describe the next
state of the lights in terms of
the current state. The state is
described by saying which
lights are on and which are
off.
Let R A G be binary variables,
each taking a 0-1 value (zero
or one), corresponding to the
red, amber and green lights.
A value of zero indicates that
the corresponding light is off;
a value of one indicates that it
is on. We write R’ A’ G’ for the
next-state variables. Then, for
example, the amber light is on
in the next state if and only if
(iff) it is off in the current state.
We can write this as an
equation, A’ = not A, where
not is the operation defined
by the truth table: not 1 = 0 ;
not 0 = 1.

OR

XOR

AND

NOT

23

The computation of the next
state can be implemented by
some basic logic gates. These
are circuits that take signals
representing binary values as
inputs (on the left of each
gate in our diagram) and
produce a signal representing
the output value specified by
the relevant truth table.
The symbols are idealisations
the actual circuits may have
other connections, for example,
to provide power.

R’ = R xor A
A’ = not A
G’ = R and A

current

next

24

The next-state logic for
sequencing our traffic lights
can be implemented using
three different gates. Many
different technologies can be
used to implement logic
gates, some may use high and
low voltages to represent
binary values, others might
use currents, but this logical
description of our circuit
provides a common abstract
level of design.
In our diagram, the current
state is stored in the three
coloured discs. The outputs of
the three gates represent the
next state. To make the state
transition we need to replace
the current state by the next
state.
We need memory. One simple
form of memory is a latch, a
special kind of circuit with two
inputs, data and clock. When
the clock ticks the current
input data value is loaded and
stored. The stored value is
output, and does not change
until the next tick of the clock.

R’ = R xor A
A’ = not A
G’ = R and A

current

next

25

3-bit m
em

ory

Clock ticks

The next-state logic for
sequencing our traffic lights
can be implemented using
three different gates. Many
different technologies can be
used to implement logic
gates, some may use high and
low voltages to represent
binary values, others might
use currents, but this logical
description of our circuit
provides a common abstract
level of design.
In our diagram, the current
state is stored in the three
coloured discs. The outputs of
the three gates represent the
next state. To make the state
transition we need to replace
the current state by the next
state.
We need memory. One simple
form of memory is a latch, a
special kind of circuit with two
inputs, data and clock. When
the clock ticks the current
input data value is loaded and
stored. The stored value is
output, and does not change
until the next tick of the clock.

combinational
logic

current
state

inputs outputs

next
state m

em
ory

26

This gives us one basic
architecture for implementing
a finite-state machine. This is a
clocked circuit. Our clock is
digital: it issues a discrete
series of ticks. A memory
stores the current state. At
each tick of the clock, the next
state is loaded into memory,
and becomes the current
state. A combinational logic
circuit computes the next
state and outputs from the
current state and inputs. It
takes some time for the next
state to be computed. The
loading of the memory must
be completed before this
happens, to avoid conflict and
confusion. Furthermore, the
next clock tick should only
come after the computation is
completed. So, some delay in
the combinational logic is
essential, to allow time for the
memory to be loaded before
the new values occur, and the
timing of the next tick of the
clock must allow ample time
for this delay.

27

Since there are three lights,
there are actually eight
possible states for the signal.
If we look back at our logic
design, we see that only the
values of R and A are used to
compute the next state.

28

In real life, things get much
more complex. One of the
things we will start to discuss
later in this course is how to
describe and analyse more
complex machines.

R’ = R xor A
A’ = G or (R and not A)
G’ = R and A

current

next

Exercise 1.2

29

Slide 25 (lecture 1) shows an
implementation of the traffic
light controller.
We could have designed our
logic differently.
For example, letting
A’ = G or (R and not A).
Draw the circuit for this
implementation.
Is this a correct
implementation of the
controller? Explain your
answer.

Exercise 1.3

1 0
0 0

0 1
1 0

1 0
0 1

1 0
1 0

0 0
1 1

1 1
0 0

0 1
0 1

0 0
1 0

0 1
0 0

0 0
0 1

1 0
1 1

1 1
1 0

0 1
1 1

1 1
0 1

0 0
0 0

1 1
1 1

A ^B

A _B A ! B

¬A B

30

Each of the 16 2x2 tables
above represents the truth
table of a binary boolean
operation.
Label each table with a
boolean expression for which
it is the truth table (five tables
are already labelled – begin
by checking whether these are
correct).
How many of the binary
operations actually depend on
both variables?
How many depend on only
one variable?
How many depend on no
variables?

Exercise 1.4

R

A G

RA

RA

GA

R

31

As discussed in the lecture,
the diagram represents the
beginnings of a refinement of
our description of the traffic
light controller. We model a
sensor that detects a car
ready to pass the light. For
each state of the lights, (R,
RA, G, A) we have two states,
one (with a double circle)
where there is a car, and the
other, without a car, as before.
Draw arrows to indicate state
changes that still obey the
correct sequence for the
lights, but also respect the
following two rules.
1. A car can only pass the

light if it is green.
2. The light only changes

from red to red-amber
when a car is detected

Optional: You may also
design the logic for the
controller.
Use a new boolean variable C
to represent the presence of a
car, and give equations for R’
A’ and G’.
Should we also give an

