
Informatics 1 
Computation and Logic 

A Traffic-Light Controller
Michael Fourman 

@mp4man

1

This course provides a first 
glimpse of the deep 
connections between 
computation and logic. We 
will focus primarily on the 
simplest non-trivial examples 
of logic and computation: 
propositional logic and finite-
state machines. 
In this first lecture we look at 
an example that introduces 
some ideas that we will 
explore further in later 
lectures, and introduce some 
notation which should 
become more familiar in due 
course.
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Our example is a traffic light 
controller, which generates 
the cyclic sequence of lights 
stipulated in the Highway 
Code:  

red – red-amber – green – 
amber  

Cars are permitted to proceed 
when the green light shows; in 
all other cases they must stop 
before the white line, if it is 
safe to do so.



red

amber

green
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A B C D

red iff A or B
amber iff B or D
green iff C

A

D B

C

logic & computation

In this course we will 
introduce the tools required 
to specify and analyse more 
complicated examples of such 
systems. 
We can describe this simple 
example as a machine that 
cycles through four states, 
with a logical equation for 
each light that describes the 
set of states in which that light 
is on. 
“iff” means “if and only if”. 
The machine describes a 
simple ‘computation’ : start in 
state A and cycle through the 
four states. 
The logical formulae describe 
the logic.



Propositional Logic concerns 
properties of things
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big blue triangle

small red disc

For the first part of this 
lecture, we consider a very 
simple ‘world’, where 
everything is either red or 
blue, either big or small, and 
either a triangle or a disc. 
Moreover, there is one, and 
only one thing of each type: 
only one big blue triangle, 
only one small red disc, and 
so on …
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red or disc

There are only four small 
things, all shown inn this 
diagram.  
The diagram also includes two 
circles, representing sets of 
things. 
Each of these sets is defined 
by a property. 
One represents the set of 
small red things, the other 
represents the set of small 
discs.
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red or disc

Regions of the diagram 
correspond to logical 
combinations of properties. 
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red and disc

Regions of the diagram 
correspond to logical 
combinations of properties
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not red
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red xor disc
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(red or disc) and
not (red and disc) 

=  
red xor disc
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If everything is  
either red or blue (not red) 
and  
either small or big (not small) 
and 
either disc or triangle (not 
disc) 
then we have 8 = 2 x 2 x 2 
possible combinations of 
three Boolean properties.
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The corresponding Venn 

diagram has eight regions.
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red
Each circle corresponds to a 
basic proposition. 
red 
Each circle includes four of the 
eight regions
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disc

Each circle corresponds to a 
basic proposition. 
disc
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small Each circle corresponds to a 
basic proposition. 
small 
Each circle includes
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red or disc
A complex proposition 
corresponds to a set of 
regions. 
red or disc  
This example includes six of 
the eight regions 
The blue triangles, which are 
not red and not disc, are 
excluded.
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not (red or disc) iff (not red and not disc)
Augustus de Morgan (1806 - 1871)

A complex proposition 
corresponds to a set of 
regions. 
red or disc  
This example includes six of 
the eight regions 
The blue triangles, which are 
not red and not disc, are 
excluded.
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There are 8 
regions in the 
diagram. How 

many subsets of 
this set of 8 

regions are there?

Given any subset of the eight regions can you 
write a complex proposition to which it 

corresponds  
(using and, or, and not as connectives)?

Exercise 1.1 A complex proposition 
corresponds to a set of 
regions. 
red or disc  
This example includes six of 
the eight regions 
The blue triangles, which are 
not red and not disc, are 
excluded.
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A

D B

C

current

next

A   B   C   D
B   C   D   A

We can draw a state-transition 

diagram (shown to the left of 
this slide) to describe the 
permitted sequence of states, 
or give a next-state table 
(shown on the right) showing 
which next state corresponds 
to each current state.
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A0

G0
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A

D

B

C

current

next

A   B   C   D
B   C   D   A

We can draw a state-transition 

diagram (shown to the left of 
this slide) to describe the 
permitted sequence of states, 
or give a next-state table 
(shown on the right) showing 
which next state corresponds 
to each current state.
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next
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G

R0

A0

G0
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We can draw a state-transition 

diagram (shown to the left of 
this slide) to describe the 
permitted sequence of states, 
or give a next-state table 
(shown on the right) showing 
which next state corresponds 
to each current state.



current

next

R

A

G

R0

A0

G0

R0
= R xorA = R�A

A0
= notA = ¬A

G0
= R andA = R ^A

A ¬A
0 1
1 0

R A R ^A R�A
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0
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We can describe the next 
state of the lights in terms of 
the current state. The state is 
described by saying which 
lights are on and which are 
off.  
Let R A G be binary variables, 
each taking a 0-1 value (zero 
or one), corresponding to the 
red, amber and green lights. 
A value of zero indicates that 
the corresponding light is off; 
a value of one indicates that it 
is on. We write R’ A’ G’ for the 
next-state variables. Then, for 
example, the amber light is on 
in the next state if and only if 
(iff) it is off in the current state. 
We can write this as an 
equation, A’ = not A, where 
not is the operation defined 
by the truth table: not 1 = 0 ; 
not 0 = 1. 



OR

XOR

AND

NOT
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The computation of the next 
state can be implemented by 
some basic logic gates. These 
are circuits that take signals 
representing binary values as 
inputs (on the left of each 
gate in our diagram) and 
produce a signal representing 
the output value specified by 
the relevant truth table. 
The symbols are idealisations  
the actual circuits may have 
other connections, for example, 
to provide power.  



R’ = R xor A
A’ =   not A
G’ = R and A

current

next
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The next-state logic for 
sequencing our traffic lights 
can be implemented using 
three different gates. Many 
different technologies can be 
used to implement logic 
gates, some may use high and 
low voltages to represent 
binary values, others might 
use currents, but this logical 
description of our circuit 
provides a common abstract 
level of design. 
In our diagram, the current 
state is stored in the three 
coloured discs. The outputs of 
the three gates represent the 
next state. To make the state 
transition we need to replace 
the current state by the next 
state. 
We need memory. One simple 
form of memory is a latch, a 
special kind of circuit with two 
inputs, data and clock. When 
the clock ticks the current 
input data value is loaded and 
stored. The stored value is 
output, and does not change 
until the next tick of the clock. 



R’ = R xor A
A’ =   not A
G’ = R and A

current

next
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3-bit m
em

ory

Clock ticks

The next-state logic for 
sequencing our traffic lights 
can be implemented using 
three different gates. Many 
different technologies can be 
used to implement logic 
gates, some may use high and 
low voltages to represent 
binary values, others might 
use currents, but this logical 
description of our circuit 
provides a common abstract 
level of design. 
In our diagram, the current 
state is stored in the three 
coloured discs. The outputs of 
the three gates represent the 
next state. To make the state 
transition we need to replace 
the current state by the next 
state. 
We need memory. One simple 
form of memory is a latch, a 
special kind of circuit with two 
inputs, data and clock. When 
the clock ticks the current 
input data value is loaded and 
stored. The stored value is 
output, and does not change 
until the next tick of the clock. 
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This gives us one basic 
architecture for implementing 
a finite-state machine. This is a 
clocked circuit. Our clock is 
digital: it issues a discrete 
series of ticks. A memory 
stores the current state. At 
each tick of the clock, the next 
state is loaded into memory, 
and becomes the current 
state. A combinational logic 
circuit computes the next 
state and outputs from the 
current state and inputs. It 
takes some time for the next 
state to be computed. The 
loading of the memory must 
be completed before this 
happens, to avoid conflict and 
confusion. Furthermore, the 
next clock tick should only 
come after the computation is 
completed. So, some delay in 
the combinational logic is 
essential, to allow time for the 
memory to be loaded before 
the new values occur, and the 
timing of the next tick of the 
clock must allow ample time 
for this delay.
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Since there are three lights, 
there are actually eight 
possible states for the signal. 
If we look back at our logic 
design, we see that only the 
values of R and A are used to 
compute the next state. 
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In real life, things get much 
more complex. One of the 
things we will start to discuss 
later in this course is how to 
describe and analyse more 
complex machines.



R’ = R xor A
A’ = G or (R and not A)
G’ = R and A

current

next

Exercise 1.2
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Slide 25 (lecture 1) shows an 
implementation of the traffic 
light controller. 
We could have designed our 
logic differently.  
For example, letting 
A’ = G or (R and not A).  
Draw the circuit for this 
implementation. 
Is this a correct 
implementation of the 
controller? Explain your 
answer.



Exercise 1.3
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Each of the 16 2x2 tables 
above represents the truth 
table of a binary boolean 
operation.  
Label each table with a 
boolean expression for which 
it is the truth table (five tables 
are already labelled – begin 
by checking whether these are 
correct). 
How many of the binary 
operations actually depend on 
both variables? 
How many depend on only 
one variable? 
How many depend on no 
variables?



Exercise 1.4
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As discussed in the lecture, 
the diagram represents the 
beginnings of a refinement of 
our description of the traffic 
light controller. We model a 
sensor that detects a car 
ready to pass the light. For 
each state of the lights, (R, 
RA, G, A) we have two states, 
one (with a double circle) 
where there is a car, and the 
other, without a car, as before. 
Draw arrows to indicate state 
changes that still obey the 
correct sequence for the 
lights, but also respect the 
following two rules. 
1. A car can only pass the 

light if it is green. 
2. The light only changes 

from red to red-amber 
when a car is detected 

Optional: You may also 
design  the logic for the 
controller.  
Use a new boolean variable C 
to represent the presence of a 
car, and give equations for R’ 
A’ and G’. 
Should we also give an 


