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This course provides a first glimpse of the deep connections between 
computation and logic. We will focus primarily on the simplest non-
trivial examples of logic and computation: propositional logic and 
finite-state machines. 
In this first lecture we look at an example that introduces some ideas 
that we will explore further in later lectures, and introduce some 
notation which should become more familiar in due course.
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Our example is a traffic light controller, which generates the cyclic 
sequence of lights stipulated in the Highway Code:  

red – red-amber – green – amber  
Cars are permitted to proceed when the green light shows; in all 
other cases they must stop before the white line, if it is safe to do so.
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amber
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A B C D

red iff A or B
amber iff B or D
green iff C

A

D B

C

logic & computation

In this course we will introduce the tools required to specify and 
analyse more complicated examples of such systems. 
We can describe this simple example as a machine that cycles 
through four states, with a logical equation for each light that 
describes the set of states in which that light is on. 
“iff” means “if and only if”. 
The machine describes a simple ‘computation’ : start in state A and 
cycle through the four states. 
The logical formulae describe the logic.

Propositional Logic concerns 
properties of things
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big blue triangle

small red disc

For the first part of this lecture, we consider a very simple ‘world’, 
where everything is either red or blue, either big or small, and either 
a triangle or a disc. 
Moreover, there is one, and only one thing of each type: only one big 
blue triangle, only one small red disc, and so on …
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red or disc

There are only four small things, all shown inn this diagram.  
The diagram also includes two circles, representing sets of things. 
Each of these sets is defined by a property. 
One represents the set of small red things, the other represents the 
set of small discs.
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red or disc

Regions of the diagram correspond to logical combinations of 
properties. 
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red and disc

Regions of the diagram correspond to logical combinations of 
properties
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not red
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red xor disc
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(red or disc) and
not (red and disc) 

=  
red xor disc
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If everything is  
either red or blue (not red) 
and  
either small or big (not small) 
and 
either disc or triangle (not disc) 
then we have 8 = 2 x 2 x 2 possible combinations of three Boolean 
properties.
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The corresponding Venn diagram has eight regions.
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red
Each circle corresponds to a basic proposition. 
red 
Each circle includes four of the eight regions
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disc

Each circle corresponds to a basic proposition. 
disc
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small Each circle corresponds to a basic proposition. 
small 
Each circle includes
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red or disc
A complex proposition corresponds to a set of regions. 
red or disc  
This example includes six of the eight regions 
The blue triangles, which are not red and not disc, are excluded.
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not (red or disc) iff (not red and not disc)
Augustus de Morgan (1806 - 1871)

A complex proposition corresponds to a set of regions. 
red or disc  
This example includes six of the eight regions 
The blue triangles, which are not red and not disc, are excluded.
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There are 8 
regions in the 
diagram. How 

many subsets of 
this set of 8 

regions are there?

Given any subset of the eight regions can you 
write a complex proposition to which it 

corresponds  
(using and, or, and not as connectives)?

Exercise 1.1 A complex proposition corresponds to a set of regions. 
red or disc  
This example includes six of the eight regions 
The blue triangles, which are not red and not disc, are excluded.
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current

next

A   B   C   D
B   C   D   A

We can draw a state-transition diagram (shown to the left of this slide) 
to describe the permitted sequence of states, or give a next-state 
table (shown on the right) showing which next state corresponds to 
each current state.

current

next

R

A

G

R0

A0

G0
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A

D
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current

next

A   B   C   D
B   C   D   A

We can draw a state-transition diagram (shown to the left of this slide) 
to describe the permitted sequence of states, or give a next-state 
table (shown on the right) showing which next state corresponds to 
each current state.
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We can draw a state-transition diagram (shown to the left of this slide) 
to describe the permitted sequence of states, or give a next-state 
table (shown on the right) showing which next state corresponds to 
each current state.

current

next

R

A

G

R0

A0

G0

R0
= R xorA = R�A

A0
= notA = ¬A

G0
= R andA = R ^A

A ¬A
0 1
1 0

R A R ^A R�A
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0
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We can describe the next state of the lights in terms of the current 
state. The state is described by saying which lights are on and which 
are off.  
Let R A G be binary variables, each taking a 0-1 value (zero or one), 
corresponding to the red, amber and green lights. A value of zero 
indicates that the corresponding light is off; a value of one indicates 
that it is on. We write R’ A’ G’ for the next-state variables. Then, for 
example, the amber light is on in the next state if and only if (iff) it is 
off in the current state. We can write this as an equation, A’ = not A, 
where not is the operation defined by the truth table: not 1 = 0 ; not 



OR

XOR
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The computation of the next state can be implemented by some 
basic logic gates. These are circuits that take signals representing 
binary values as inputs (on the left of each gate in our diagram) and 
produce a signal representing the output value specified by the 
relevant truth table. 
The symbols are idealisations  the actual circuits may have other 
connections, for example, to provide power.  

R’ = R xor A
A’ =   not A
G’ = R and A

current

next
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The next-state logic for sequencing our traffic lights can be 
implemented using three different gates. Many different technologies 
can be used to implement logic gates, some may use high and low 
voltages to represent binary values, others might use currents, but 
this logical description of our circuit provides a common abstract 
level of design. 
In our diagram, the current state is stored in the three coloured discs. 
The outputs of the three gates represent the next state. To make the 
state transition we need to replace the current state by the next 
state. 



R’ = R xor A
A’ =   not A
G’ = R and A

current

next
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3-bit m
em

ory

Clock ticks

The next-state logic for sequencing our traffic lights can be 
implemented using three different gates. Many different technologies 
can be used to implement logic gates, some may use high and low 
voltages to represent binary values, others might use currents, but 
this logical description of our circuit provides a common abstract 
level of design. 
In our diagram, the current state is stored in the three coloured discs. 
The outputs of the three gates represent the next state. To make the 
state transition we need to replace the current state by the next 
state. 

combinational 
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This gives us one basic architecture for implementing a finite-state 

machine. This is a clocked circuit. Our clock is digital: it issues a 
discrete series of ticks. A memory stores the current state. At each 
tick of the clock, the next state is loaded into memory, and becomes 
the current state. A combinational logic circuit computes the next 
state and outputs from the current state and inputs. It takes some 
time for the next state to be computed. The loading of the memory 
must be completed before this happens, to avoid conflict and 
confusion. Furthermore, the next clock tick should only come after 
the computation is completed. So, some delay in the combinational 
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Since there are three lights, there are actually eight possible states 
for the signal. If we look back at our logic design, we see that only 
the values of R and A are used to compute the next state. 
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In real life, things get much more complex. One of the things we will 
start to discuss later in this course is how to describe and analyse 
more complex machines.



R’ = R xor A
A’ = G or (R and not A)
G’ = R and A

current

next

Exercise 1.2
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Slide 25 (lecture 1) shows an implementation of the traffic light 
controller. 
We could have designed our logic differently.  
For example, letting 
A’ = G or (R and not A).  
Draw the circuit for this implementation. 
Is this a correct implementation of the controller? Explain your 
answer.

Exercise 1.3
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Each of the 16 2x2 tables above represents the truth table of a binary 
boolean operation.  
Label each table with a boolean expression for which it is the truth 
table (five tables are already labelled – begin by checking whether 
these are correct). 
How many of the binary operations actually depend on both 
variables? 
How many depend on only one variable? 
How many depend on no variables?
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As discussed in the lecture, the diagram represents the beginnings of 
a refinement of our description of the traffic light controller. We 
model a sensor that detects a car ready to pass the light. For each 
state of the lights, (R, RA, G, A) we have two states, one (with a 
double circle) where there is a car, and the other, without a car, as 
before. 
Draw arrows to indicate state changes that still obey the correct 
sequence for the lights, but also respect the following two rules. 
1. A car can only pass the light if it is green. 
2. The light only changes from red to red-amber when a car is 


