
Informatics 1
Computation and Logic

A Traffic-Light Controller
Michael Fourman

@mp4man

1

This course provides a first glimpse of the deep connections between
computation and logic. We will focus primarily on the simplest non-
trivial examples of logic and computation: propositional logic and
finite-state machines.
In this first lecture we look at an example that introduces some ideas
that we will explore further in later lectures, and introduce some
notation which should become more familiar in due course.

2

Our example is a traffic light controller, which generates the cyclic
sequence of lights stipulated in the Highway Code:

red – red-amber – green – amber
Cars are permitted to proceed when the green light shows; in all
other cases they must stop before the white line, if it is safe to do so.

red

amber

green

3

A B C D

red iff A or B
amber iff B or D
green iff C

A

D B

C

logic & computation

In this course we will introduce the tools required to specify and
analyse more complicated examples of such systems.
We can describe this simple example as a machine that cycles
through four states, with a logical equation for each light that
describes the set of states in which that light is on.
“iff” means “if and only if”.
The machine describes a simple ‘computation’ : start in state A and
cycle through the four states.
The logical formulae describe the logic.

Propositional Logic concerns
properties of things

4

big blue triangle

small red disc

For the first part of this lecture, we consider a very simple ‘world’,
where everything is either red or blue, either big or small, and either
a triangle or a disc.
Moreover, there is one, and only one thing of each type: only one big
blue triangle, only one small red disc, and so on …

5
red or disc

There are only four small things, all shown inn this diagram.
The diagram also includes two circles, representing sets of things.
Each of these sets is defined by a property.
One represents the set of small red things, the other represents the
set of small discs.

6
red or disc

Regions of the diagram correspond to logical combinations of
properties.

7
red and disc

Regions of the diagram correspond to logical combinations of
properties

8
not red

9
red xor disc

10

(red or disc) and
not (red and disc)

=
red xor disc

11

If everything is
either red or blue (not red)
and
either small or big (not small)
and
either disc or triangle (not disc)
then we have 8 = 2 x 2 x 2 possible combinations of three Boolean
properties.

12

The corresponding Venn diagram has eight regions.

13

red
Each circle corresponds to a basic proposition.
red
Each circle includes four of the eight regions

14

disc

Each circle corresponds to a basic proposition.
disc

15

small Each circle corresponds to a basic proposition.
small
Each circle includes

16

red or disc
A complex proposition corresponds to a set of regions.
red or disc
This example includes six of the eight regions
The blue triangles, which are not red and not disc, are excluded.

17

not (red or disc) iff (not red and not disc)
Augustus de Morgan (1806 - 1871)

A complex proposition corresponds to a set of regions.
red or disc
This example includes six of the eight regions
The blue triangles, which are not red and not disc, are excluded.

18

There are 8
regions in the
diagram. How

many subsets of
this set of 8

regions are there?

Given any subset of the eight regions can you
write a complex proposition to which it

corresponds  
(using and, or, and not as connectives)?

Exercise 1.1 A complex proposition corresponds to a set of regions.
red or disc
This example includes six of the eight regions
The blue triangles, which are not red and not disc, are excluded.

19

A

D B

C

current

next

A B C D
B C D A

We can draw a state-transition diagram (shown to the left of this slide)
to describe the permitted sequence of states, or give a next-state
table (shown on the right) showing which next state corresponds to
each current state.

current

next

R

A

G

R0

A0

G0

20

A

D

B

C

current

next

A B C D
B C D A

We can draw a state-transition diagram (shown to the left of this slide)
to describe the permitted sequence of states, or give a next-state
table (shown on the right) showing which next state corresponds to
each current state.

current

next

R

A

G

R0

A0

G0

21

We can draw a state-transition diagram (shown to the left of this slide)
to describe the permitted sequence of states, or give a next-state
table (shown on the right) showing which next state corresponds to
each current state.

current

next

R

A

G

R0

A0

G0

R0
= R xorA = R�A

A0
= notA = ¬A

G0
= R andA = R ^A

A ¬A
0 1
1 0

R A R ^A R�A
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

22

We can describe the next state of the lights in terms of the current
state. The state is described by saying which lights are on and which
are off.
Let R A G be binary variables, each taking a 0-1 value (zero or one),
corresponding to the red, amber and green lights. A value of zero
indicates that the corresponding light is off; a value of one indicates
that it is on. We write R’ A’ G’ for the next-state variables. Then, for
example, the amber light is on in the next state if and only if (iff) it is
off in the current state. We can write this as an equation, A’ = not A,
where not is the operation defined by the truth table: not 1 = 0 ; not

OR

XOR

AND

NOT

23

The computation of the next state can be implemented by some
basic logic gates. These are circuits that take signals representing
binary values as inputs (on the left of each gate in our diagram) and
produce a signal representing the output value specified by the
relevant truth table.
The symbols are idealisations the actual circuits may have other
connections, for example, to provide power.

R’ = R xor A
A’ = not A
G’ = R and A

current

next

24

The next-state logic for sequencing our traffic lights can be
implemented using three different gates. Many different technologies
can be used to implement logic gates, some may use high and low
voltages to represent binary values, others might use currents, but
this logical description of our circuit provides a common abstract
level of design.
In our diagram, the current state is stored in the three coloured discs.
The outputs of the three gates represent the next state. To make the
state transition we need to replace the current state by the next
state.

R’ = R xor A
A’ = not A
G’ = R and A

current

next

25

3-bit m
em

ory

Clock ticks

The next-state logic for sequencing our traffic lights can be
implemented using three different gates. Many different technologies
can be used to implement logic gates, some may use high and low
voltages to represent binary values, others might use currents, but
this logical description of our circuit provides a common abstract
level of design.
In our diagram, the current state is stored in the three coloured discs.
The outputs of the three gates represent the next state. To make the
state transition we need to replace the current state by the next
state.

combinational
logic

current
state

inputs outputs

next
state m

em
ory

26

This gives us one basic architecture for implementing a finite-state

machine. This is a clocked circuit. Our clock is digital: it issues a
discrete series of ticks. A memory stores the current state. At each
tick of the clock, the next state is loaded into memory, and becomes
the current state. A combinational logic circuit computes the next
state and outputs from the current state and inputs. It takes some
time for the next state to be computed. The loading of the memory
must be completed before this happens, to avoid conflict and
confusion. Furthermore, the next clock tick should only come after
the computation is completed. So, some delay in the combinational

27

Since there are three lights, there are actually eight possible states
for the signal. If we look back at our logic design, we see that only
the values of R and A are used to compute the next state.

28

In real life, things get much more complex. One of the things we will
start to discuss later in this course is how to describe and analyse
more complex machines.

R’ = R xor A
A’ = G or (R and not A)
G’ = R and A

current

next

Exercise 1.2

29

Slide 25 (lecture 1) shows an implementation of the traffic light
controller.
We could have designed our logic differently.
For example, letting
A’ = G or (R and not A).
Draw the circuit for this implementation.
Is this a correct implementation of the controller? Explain your
answer.

Exercise 1.3

1 0
0 0

0 1
1 0

1 0
0 1

1 0
1 0

0 0
1 1

1 1
0 0

0 1
0 1

0 0
1 0

0 1
0 0

0 0
0 1

1 0
1 1

1 1
1 0

0 1
1 1

1 1
0 1

0 0
0 0

1 1
1 1

A ^B

A _B A ! B

¬A B

30

Each of the 16 2x2 tables above represents the truth table of a binary
boolean operation.
Label each table with a boolean expression for which it is the truth
table (five tables are already labelled – begin by checking whether
these are correct).
How many of the binary operations actually depend on both
variables?
How many depend on only one variable?
How many depend on no variables?

Exercise 1.4

R

A G

RA

RA

GA

R

31

As discussed in the lecture, the diagram represents the beginnings of
a refinement of our description of the traffic light controller. We
model a sensor that detects a car ready to pass the light. For each
state of the lights, (R, RA, G, A) we have two states, one (with a
double circle) where there is a car, and the other, without a car, as
before.
Draw arrows to indicate state changes that still obey the correct
sequence for the lights, but also respect the following two rules.
1. A car can only pass the light if it is green.
2. The light only changes from red to red-amber when a car is

