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Basics for the exam 
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not 
or 

not 
not and 

i1 
i2 o1 

i1 
i2 

o1 

not(i1) or i2  

not(I1 and not(i2)) 

equivalent ? equivalent ? 
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Proof Sub-proofs 
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[B → C]    (A or B) → (A or C) 

[(A or B), B → C]    (A or C) 

(A or B) ∈ [(A or B), B → C] 
[A, (A or B), B → C]    (A or C) 

[B, (A or B), B → C]    (A or C) [A, (A or B), B → C]    A 

A ∈ [A, (A or B), B → C] [B, (A or B), B → C]    C 

B → C ∈ [B, (A or B), B → C] [B, (A or B), B → C]    B 

B ∈ [B, (A or B), B → C] 
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Proof Sub-proofs 

The purpose of these rules is to provide 
positive evidence that an expression is false. 
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Replace all the previous negation rules with: 

Proof Sub-proofs 
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not(not(A)         is equivalent to  A 
A → B               is equivalent to  not(A) or B 
A ↔ B               is equivalent to  (A → B) and (B → A) 
not(A or B)        is equivalent to  not(A) and not(B) 
not(A and B)     is equivalent to  not(A) or not(B) 
A or (B and C)  is equivalent to  (A or B) and (A or C) 
A and (B or C)  is equivalent to  (A and B) or (A and C) 

Basic equivalences to remember are: 
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(a and not(b) → c)  and  a  and  not(c) 

(not(a and not(b)) or c)  and  a  and  not(c) 
 not(P and Q)   equivalent to   not(P) or not(Q) 

(not(a) or not(not(b)) or c)  and  a  and  not(c) 
 not(not(P))   equivalent to   P 

 P → Q   equivalent to   not(P) or Q 

(not(a) or b or c)  and  a  and  not(c) 
(P or …) and …      to   [ [P,…],…] 

[ [not(a),b,c], [a], [not(c)] ] 
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To prove  b  from   [ [not(a),b,c], [a], [not(c)] ] 
show that [ [not(b)], [not(a),b,c], [a], [not(c)] ] 
is inconsistent 

[not(b)] [not(a),b,c] 

[a] 

[not(c)] 

[not(a), c] 

[c] 

 [ ] 
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Proof Sub-proofs 
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s1 s2 
i1/o1 

i2/o2 

i3/o3 
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s1 s2 
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a 

b 
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s1 s2 
a 

a 

b 

s1, a, s2, a, s2, b, s1, a, s2 
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s1 s2 
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s1 s2 - 

s2 s2 s1 
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s1 s2 
a 
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s1 s2 
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b 

Deterministic 

Nondeterministic 

s3 

ε 



20 

Informatics 1 
School of Informatics, University of Edinburgh 

M1 M2 ε ε ε 

M1 
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ε 

ε 
ε 

ε 

ε 

ε 

sequence 

choice repetition 
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E1E2 

E1|E2 

E* 

Sequence 

Choice 

Repetition 
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For every regular expression we can build a 
FSM  to accept the language defined by it. 
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Some languages can’t be defined by FSMs or 
regular expressions - languages that require 
us to count up to arbitrarily high numbers for 
example. 
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s1 s2 
a (0.8) 

a (1) 

b (1) 

s3 

a (0.2) a (0.3) a (0.7) 
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and good luck with the exam 


