Review of Informatics 1
Computation & Logic

Basics for the exam
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Truth Tables
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Inconsistencies
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Contingencies
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Typical Problem

@—> not
@ \E not(i1) or i2

equivalent ? equivalent ?
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Proof Rules

Proof Sub-proofs

FFA AEc F

FFAandB |FFA | FFB

FFAorB FEFA

FFAorB |FFB

FFC AorBEF [AIF]FC [BIF]FC

FIB A—-BEF FFA

FFA—=B |[AlF]FB
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Proofs (and Proof Trees)

[B—=C]F(AorB)— (AorC)
[(AorB), B J C] F(AorC)
(AorB)e[(AorB), B — C]
[A, (AorB),B—=C] F(AorC)

[A, (AorB),B—=C]FA [B, (AorB)’B%(-l\’]l'(AOFC)
AE[A (A OrlB), B — C] [B,(AorB),B—-C]}C

B—-Ceg[B,(AorB),B—-C] [B, (AorB),I?eC]I-B
Be[B, (AorB), B — C]

Informatics 1
School of Informatics, University of Edinburgh



Proof Rules for Negation

Proof Sub-proofs

FEA F I false

F Fnot(A) |[A|F]} false

FFB not(A) € F - FFA
FFA F F not(not(A))

The purpose of these rules is to provide
positive evidence that an expression is false.
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Negation as Failure

Replace all the previous negation rules with:

Proof Sub-proofs

FFnot(A) | FHA

Where F ¥ A means a proof can’t be found for A from

t
t

'his makes the closed world assumption
nat /~ contains all the axioms pertinent to

ne problem and that the proof search is

complete.
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Equivalences

Basic equivalences to remember are:

not(not(A) is equivalentto A
A— B IS equivalent to not(A) or B
A< B IS equivalentto (A—B)and (B —A)

not(A or B) is equivalent to not(A) and not(B)
not(Aand B) is equivalent to not(A) or not(B)

Aor (B and C) is equivalentto (AorB)and (Aor C)
Aand (B or C) is equivalentto (Aand B) or (Aand C)
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Conversion to Clausal Form

(a and not(b) — ¢c) and a and not(c)
P — Q equivalentto not(P)or Q
(not(a and not(b)) or ¢c) and a and not(c)
not(P and Q) equivalent to not(P) or not(Q)
(not(a) or not(not(b)) or c) and a and not(c)
not(not(P)) equivalentto P
(not(a) orborc) and a and not(c)
(Por...)and... to [[P...],...]

[ [not(a),b,c], [a], [not(c)] ]
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A Resolution Proof

To prove b from [[not(a),b,c], [a], [not(c)] ]

show that [ [not(b)], [not(a),b,c], [a], [not(c)]
IS Inconsistent

[not(b not(a),b,c]
o
[not(a), C] a]
N Mot
N

[]

Informatics 1
School of Informatics, University of Edinburgh

13



Temporal Proof Rules

Proof Sub-proofs

SO FA access(J, S, F) FEA
SJ) FAand B (S,J) FA (SJ) | B
S,J) FAorB (S,J) FA

S,J) FAorB (S,J) FB

S,J) F not(A) (S.J) FA

S,J) F next(A) (S,J+1) A

S,J) F prev(A) (S,J-1) FA

S,J) Fe_future(A) (S,K) FA for some K > J
S,J) Fe_past(A) (S,K) FB forsome K< J
S,J) Fa_future(A) (S,K) FA forall K> J

S,J) Fa_past(A) (SK) FA forall K < J
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Transducer FSMs
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i1/01
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13/03
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Acceptor FSMs

s1 2
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Traces

S1 2

s1,a, s2,a, s2,b,sl, a, s2
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Transition Function

a

S1 2 1&55')

b
a b
s1 s2 -
s2 s2 s1
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Deterministic v Nondeterministic {X):

d

a Deterministic

s1

Nondeterministic
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Structured FSM Design

OO OmCHC

sequence
e
@)
e
choice repetition
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Regular Expressions

E.E, Sequence
E.|E, Choice
E Repetition
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Half of Kleene’s Theorem

For every regular expression we can build a
FSM to accept the language defined by it.
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Limits of FSMs and Regular
Expressions

Some languages can’t be defined by FSMs or
regular expressions - languages that require
us to count up to arbitrarily high numbers for
example.
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Probabilistic FSMs

b (1)
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Thanks

and good luck with the exam
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