Review of Informatics 1
Computation & Logic

Basics for the exam

Informatics 1
School of Informatics, University of Edinburgh

Truth Tables

Pl Q|not(P)|Pand Q[P or QP = Q|P <+ Q
t f { t t t

t | f| f f t f f

flt t f t t f

f|f t f f t t

Informatics 1
School of Informatics, University of Edinburgh

Inconsistencies

P and not(P)
t t

f

. _J/
Y
f

P and not(
f

P)
f

H_J

t

-

_J

~
f

Informatics 1

School of Informatics, University of Edinburgh

Contingencies

(PorQ)—P || (PorQ)—P
t t t t f t

(N J . J
Y
1 1t
g v
t

_J

u f \\ fj f
< U , . f ,
v ~v
f t

Informatics 1
School of Informatics, University of Edinburgh

Pand(P—-Q)—=Q||Pand (P—Q)—Q
t R Yt, t t ! Yf, f
-t N I
- t] - f _
t t
Pand(P—-=Q)—= Q|| Pand (P—Q)—Q
f \f Ytj t f \f J f
R -t
t t

Informatics 1
School of Informatics, University of Edinburgh

Typical Problem

@—> not
@ \E not(i1) or i2

equivalent ? equivalent ?

|)|and ‘not
not(l11 and not(i2))

not

S

Informatics 1
School of Informatics, University of Edinburgh

Proof Rules

Proof Sub-proofs

FFA AEc F

FFAandB |FFA | FFB

FFAorB FEFA

FFAorB |FFB

FFC AorBEF [AIF]FC [BIF]FC

FIB A—-BEF FFA

FFA—=B |[AlF]FB

Informatics 1
School of Informatics, University of Edinburgh

Proofs (and Proof Trees)

[B—=C]F(AorB)— (AorC)
[(AorB), B J C] F(AorC)
(AorB)e[(AorB), B — C]
[A, (AorB),B—=C] F(AorC)

[A, (AorB),B—=C]FA [B, (AorB)’B%(-l\’]l'(AOFC)
AE[A (A OrlB), B — C] [B,(AorB),B—-C]}C

B—-Ceg[B,(AorB),B—-C] [B, (AorB),I?eC]I-B
Be[B, (AorB), B — C]

Informatics 1
School of Informatics, University of Edinburgh

Proof Rules for Negation

Proof Sub-proofs

FEA F I false

F Fnot(A) |[A|F]} false

FFB not(A) € F - FFA
FFA F F not(not(A))

The purpose of these rules is to provide
positive evidence that an expression is false.

Informatics 1
School of Informatics, University of Edinburgh

Negation as Failure

Replace all the previous negation rules with:

Proof Sub-proofs

FFnot(A) | FHA

Where F ¥ A means a proof can’t be found for A from

t
t

'his makes the closed world assumption
nat /~ contains all the axioms pertinent to

ne problem and that the proof search is

complete.

Informatics 1
School of Informatics, University of Edinburgh

10

Equivalences

Basic equivalences to remember are:

not(not(A) is equivalentto A
A— B IS equivalent to not(A) or B
A< B IS equivalentto (A—B)and (B —A)

not(A or B) is equivalent to not(A) and not(B)
not(Aand B) is equivalent to not(A) or not(B)

Aor (B and C) is equivalentto (AorB)and (Aor C)
Aand (B or C) is equivalentto (Aand B) or (Aand C)

Informatics 1

School of Informatics, University of Edinburgh
1"

Conversion to Clausal Form

(a and not(b) — ¢c) and a and not(c)
P — Q equivalentto not(P)or Q
(not(a and not(b)) or ¢c) and a and not(c)
not(P and Q) equivalent to not(P) or not(Q)
(not(a) or not(not(b)) or c) and a and not(c)
not(not(P)) equivalentto P
(not(a) orborc) and a and not(c)
(Por...)and... to [[P...],...]

[[not(a),b,c], [a], [not(c)]]

Informatics 1
School of Informatics, University of Edinburgh

12

A Resolution Proof

To prove b from [[not(a),b,c], [a], [not(c)]]

show that [[not(b)], [not(a),b,c], [a], [not(c)]
IS Inconsistent

[not(b not(a),b,c]
o
[not(a), C] a]
N Mot
N

[]

Informatics 1
School of Informatics, University of Edinburgh

13

Temporal Proof Rules

Proof Sub-proofs

SO FA access(J, S, F) FEA
SJ) FAand B (S,J) FA (SJ) | B
S,J) FAorB (S,J) FA

S,J) FAorB (S,J) FB

S,J) F not(A) (S.J) FA

S,J) F next(A) (S,J+1) A

S,J) F prev(A) (S,J-1) FA

S,J) Fe_future(A) (S,K) FA for some K > J
S,J) Fe_past(A) (S,K) FB forsome K< J
S,J) Fa_future(A) (S,K) FA forall K> J

S,J) Fa_past(A) (SK) FA forall K < J

Informatics 1
School of Informatics, University of Edinburgh

14

Transducer FSMs

12/02
i1/01

s1

13/03

Informatics 1
School of Informatics, University of Edinburgh

15

Acceptor FSMs

s1 2

Informatics 1
School of Informatics, University of Edinburgh

16

Traces

S1 2

s1,a, s2,a, s2,b,sl, a, s2

Informatics 1
School of Informatics, University of Edinburgh

17

Transition Function

a

S1 2 1&55')

b
a b
s1 s2 -
s2 s2 s1

Informatics 1
School of Informatics, University of Edinburgh

18

Deterministic v Nondeterministic {X):

d

a Deterministic

s1

Nondeterministic

Informatics 1
School of Informatics, University of Edinburgh

19

Structured FSM Design

OO OmCHC

sequence
e
@)
e
choice repetition

L .
' Informatics 1
School of Informatics, University of Edinburgh

Regular Expressions

E.E, Sequence
E.|E, Choice
E Repetition

Informatics 1
School of Informatics, University of Edinburgh

21

Half of Kleene’s Theorem

For every regular expression we can build a
FSM to accept the language defined by it.

Informatics 1
School of Informatics, University of Edinburgh

22

Limits of FSMs and Regular
Expressions

Some languages can’t be defined by FSMs or
regular expressions - languages that require
us to count up to arbitrarily high numbers for
example.

Informatics 1
School of Informatics, University of Edinburgh

23

Probabilistic FSMs

b (1)

Informatics 1
School of Informatics, University of Edinburgh

24

Thanks

and good luck with the exam

Informatics 1
School of Informatics, University of Edinburgh

25

