
1 

Informatics 1 
School of Informatics, University of Edinburgh 

Basics for the exam 



2 

Informatics 1 
School of Informatics, University of Edinburgh 

P Q not(P) P and Q P or Q P → Q P ↔ Q 

t 

f t 

f 

t 

f t 

f 

f 

f 

t 

t 

t 

f 

f 

f 

t 

t 

t 

f 

t 

f 

t 

t 

t 

f 

f 

t 



3 

Informatics 1 
School of Informatics, University of Edinburgh 

P and not(P) 
t t 

f 

f 

P and not(P) 
f f 

t 

f 



4 

Informatics 1 
School of Informatics, University of Edinburgh 

(P or Q) → P  
t t t 

t 

t 

(P or Q) → P  
t f t 

t 

t 

(P or Q) → P  
f t f 

t 

f 

(P or Q) → P  
f f f 

f 

t 



5 

Informatics 1 
School of Informatics, University of Edinburgh 

P and (P → Q) → Q  
t t t t 

t 
t 

t 

P and (P → Q) → Q  
t t f f 

f 
f 

t 

P and (P → Q) → Q  
f f t t 

t 
t 

t 

P and (P → Q) → Q  
f f f f 

t 
f 

t 



6 

Informatics 1 
School of Informatics, University of Edinburgh 

not 
or 

not 
not and 

i1 
i2 o1 

i1 
i2 

o1 

not(i1) or i2  

not(I1 and not(i2)) 

equivalent ? equivalent ? 



7 

Informatics 1 
School of Informatics, University of Edinburgh 

Proof Sub-proofs 



8 

Informatics 1 
School of Informatics, University of Edinburgh 

[B → C]    (A or B) → (A or C) 

[(A or B), B → C]    (A or C) 

(A or B) ∈ [(A or B), B → C] 
[A, (A or B), B → C]    (A or C) 

[B, (A or B), B → C]    (A or C) [A, (A or B), B → C]    A 

A ∈ [A, (A or B), B → C] [B, (A or B), B → C]    C 

B → C ∈ [B, (A or B), B → C] [B, (A or B), B → C]    B 

B ∈ [B, (A or B), B → C] 



9 

Informatics 1 
School of Informatics, University of Edinburgh 

Proof Sub-proofs 

The purpose of these rules is to provide 
positive evidence that an expression is false. 



10 

Informatics 1 
School of Informatics, University of Edinburgh 

Replace all the previous negation rules with: 

Proof Sub-proofs 



11 

Informatics 1 
School of Informatics, University of Edinburgh 

not(not(A)         is equivalent to  A 
A → B               is equivalent to  not(A) or B 
A ↔ B               is equivalent to  (A → B) and (B → A) 
not(A or B)        is equivalent to  not(A) and not(B) 
not(A and B)     is equivalent to  not(A) or not(B) 
A or (B and C)  is equivalent to  (A or B) and (A or C) 
A and (B or C)  is equivalent to  (A and B) or (A and C) 

Basic equivalences to remember are: 



12 

Informatics 1 
School of Informatics, University of Edinburgh 

(a and not(b) → c)  and  a  and  not(c) 

(not(a and not(b)) or c)  and  a  and  not(c) 
 not(P and Q)   equivalent to   not(P) or not(Q) 

(not(a) or not(not(b)) or c)  and  a  and  not(c) 
 not(not(P))   equivalent to   P 

 P → Q   equivalent to   not(P) or Q 

(not(a) or b or c)  and  a  and  not(c) 
(P or …) and …      to   [ [P,…],…] 

[ [not(a),b,c], [a], [not(c)] ] 



13 

Informatics 1 
School of Informatics, University of Edinburgh 

To prove  b  from   [ [not(a),b,c], [a], [not(c)] ] 
show that [ [not(b)], [not(a),b,c], [a], [not(c)] ] 
is inconsistent 

[not(b)] [not(a),b,c] 

[a] 

[not(c)] 

[not(a), c] 

[c] 

 [ ] 



14 

Informatics 1 
School of Informatics, University of Edinburgh 

Proof Sub-proofs 



15 

Informatics 1 
School of Informatics, University of Edinburgh 

s1 s2 
i1/o1 

i2/o2 

i3/o3 



16 

Informatics 1 
School of Informatics, University of Edinburgh 

s1 s2 
a 

a 

b 



17 

Informatics 1 
School of Informatics, University of Edinburgh 

s1 s2 
a 

a 

b 

s1, a, s2, a, s2, b, s1, a, s2 



18 

Informatics 1 
School of Informatics, University of Edinburgh 

s1 s2 
a 

a 

b 

a b 

s1 s2 - 

s2 s2 s1 



19 

Informatics 1 
School of Informatics, University of Edinburgh 

s1 s2 
a 

a 

b 

s1 s2 
a 

b 

b 

Deterministic 

Nondeterministic 

s3 

ε 



20 

Informatics 1 
School of Informatics, University of Edinburgh 

M1 M2 ε ε ε 

M1 

M2 

M 

ε 

ε 

ε 

ε 
ε 

ε 

ε 

ε 

sequence 

choice repetition 



21 

Informatics 1 
School of Informatics, University of Edinburgh 

E1E2 

E1|E2 

E* 

Sequence 

Choice 

Repetition 



22 

Informatics 1 
School of Informatics, University of Edinburgh 

For every regular expression we can build a 
FSM  to accept the language defined by it. 



23 

Informatics 1 
School of Informatics, University of Edinburgh 

Some languages can’t be defined by FSMs or 
regular expressions - languages that require 
us to count up to arbitrarily high numbers for 
example. 



24 

Informatics 1 
School of Informatics, University of Edinburgh 

s1 s2 
a (0.8) 

a (1) 

b (1) 

s3 

a (0.2) a (0.3) a (0.7) 



25 

Informatics 1 
School of Informatics, University of Edinburgh 

and good luck with the exam 


