
Understanding Resolution

0. Useful De�nitions

Atom/Atomic Proposition/Propositional Variable

Propositional variable (the same as atomic proposition, and often referred to as atom)
is the simplest 'bit' of the propositional formula. Most often, it will be a letter like A,
B, C... . It can be symbols, words or more letters (for example, below, to represent
'goose in the boat' I use the atom 'GB'). The de�ning property is not the symbol
used, but the fact that the atom cannot be decomposed further. For example, this
term will not refer to an expression like ¬A, as it is a combination of the propositional
variable A with the negation operator.

Valuation

A valuation is an assignment of truth values to propositional atoms. For example,
the expression A ∨ B has four distinct valuations: A-true, B-true; A-true, B-false;
A-false, B-true; A-false, B-false. Here, �rst three valuations make the expression true,
the last valuation makes the expression false.

Valuations are often represented with a letter V, for example if we have an expression
composed of atoms A, B, C and we call it α, we can present a particular valuation
like so: V(α): A-T, B-F, C-F.

Satis�ability

An expression is satis�able i� there exists a valuation that makes that expression
true.

Why should we care?

In real-life situations, the expression in question will represent a problem we want
to solve. Once we formulate the problem as a logical expression, we can apply pro-
cedures like resolution to it to determine its satis�ability. If we �nd the expression
is unsatis�able, it means that the problem cannot be solved. If we �nd that it is
possible to satisfy the expression, we can look for the satisfying valuation, which will
correspond to the solution of our problem.

As an example, take this very simple problem:
We can place a goose in the boat (represented by the propositional variable GB), on
the west side of the river (GW) or on the east side of the river (GE). Let us say we
do not want to place the goose on either side of the river (for example because there

1



is corn growing on each riverbank and we do not want the goose to eat it). Where
should we place the goose?

Expressed as a boolean formula, our problem becomes:

(GB ∨GW ∨GE) ∧ ¬GW ∧ ¬GE

Resolution will lead you to derivation of GB (not deriving the empty clause means
that expression is satis�able, so the problem can be solved). With a refutation tree
you will �nd that valuation which makes the expression true is: GB true, GW false,
GE false. Meaning that the goose has to be in the boat, and not on the west side on
the river, and not on the east side of the river. Put the goose in the boat � problem
solved, corn is safe!

Note that the example above is extremely simple and you could guess very easily that
the goose should be placed in the boat � however the procedure you performed in your
mind to do it (if goose has to be in either of these three places, and it cannot be on the
west side, and it cannot be in the east side, then it has to be in the boat) is exactly
what resolution is. Normally we are faced with problems far more complicated and
harder to solve in your mind. That is why we formally de�ne rules of logic, so that
given a boolean expression, computers can determine its satis�ability for us.

1. Purpose of Resolution

The purpose of resolution is to �nd out whether a given expression is satis�able
(whether it has a valuation that makes it true) or not, to see if the problem corre-
sponding to the expression is solvable or not.

2. Resolution Mechanism

Resolution works to make it easier for us to determine whether a given expression
is satis�able by identifying the elements of the original expression on which the sat-
is�ability depends. Take the most general example which shows the satis�ability
dependencies of the expression (X ∨ Y ) ∧ (¬X ∨ Z):

{X, Y } {¬X,Z}
{Y, Z}

The most important observation is that we cannot use the variable X to guarantee
truthfulness of (X ∨ Y ) ∧ (¬X ∨ Z). If we make X true, (X ∨ Y ) will be made true,
but (¬X∨Z) truthfulness will depend on the truth value of Z. Conversely, if we make
X false, (¬X ∨ Z) will be true, but then (X ∨ Y ) can only be made true if Y is true,
and will be false if Y is false. Because X and its negation appears in two di�erent
clauses, regardless of the truth value of X, the truthfulness of the entire expression
will depend on the remaining variables, here, (Y ∨ Z).

2



In other words, if we found that (Y ∨ Z) is false (we cannot satisfy it), we would
not be able to satisfy the original expression. Also, note that in order to make the
original expression true, the derived clause (Y ∨ Z) must be made true.

All resolution steps rely on this principle. That is why if we derive an empty clause
(which is always false and there is no way to satisfy it), we can deduce that the
original expression is not satis�able. That is also why if after resolving each possible
clause, empty clause is not derived, we can derive a satisfying valuation by picking
variable values which satisfy all clauses (and the simplest way to do this is by starting
from the last step of resolution and going back; see Example 4.3).

3. Example: Unsolvable Problem

3.1. De�ning the problem

Problem:
We can place the goose on the riverbank or in a boat. There is corn growing on the
riverbank. The boat is also full of corn (let's say we cannot get it out). If we put the
goose in the same place as the corn, the goose will eat it. We want to prevent that
from happening as the goose is allergic to corn. Where should we put the goose?

Corresponding boolean expression is:

(GRB ∨GB) ∧ CRB ∧ CB ∧ ¬(CRB ∧GRB) ∧ ¬(CB ∧GB)

where:
GRB � goose is on the riverbank
CRB � corn is on the riverbank
GB � goose is in the boat
CB � corn is in the boat

(GRB ∨GB) � goose is on the riverbank or in the boat
¬(CRB ∧GRB) � goose and corn cannot be together on the riverbank
¬(CB ∧GB) � goose and corn cannot be together in the boat

Deriving an equivalent CNF expression by applying de Morgan law ¬(A ∧ B) ≡
(¬A ∨ ¬B) to the original expression:

(GRB ∨GB) ∧ CRB ∧ CB ∧ (¬CRB ∨ ¬GRB) ∧ (¬CB ∨ ¬GB)

3.2. Applying Resolution

Note that the order of the variables to which we apply resolution does not matter
for the validity of the resolution. Here the clause that we currently resolve on is the

3



name of the column, and indices next to clauses indicate which step the clause was
used in.

CB GB GRB CRB

{CB}1 {¬GB}2 {GRB}3 {¬CRB}4 {}
{CRB}4

{GB,GRB}2

{¬GB,¬CB}1

{¬GRB,¬CRB}3

1. We may start by resolving on CB. Since corn is in the boat (CB) and we
need to make it true that goose is not in the boat or corn is not in the boat
(¬GB ∨ ¬CB), we must make it true that goose is not in the boat (¬GB).

2. Here I chose to resolve on GB next. We know that goose cannot be in the
boat (derived in the previous step) and that it has to be in the boat or on the
riverbank (GB ∨GRB). We deduce it must be on the riverbank (GRB).

3. Resolving on GRB, since we must make it true that GRB (goose on the river-
bank) and (¬GRB ∨ ¬CRB) (goose or corn must not be on the riverbank,
since they must be separate), we have to make it true that corn is not on the
riverbank (¬CRB).

4. Last two clauses that were not used are CRB and ¬CRB. We �nd that to
satisfy the expression, we must make it true that corn is on the riverbank (as
was de�ned in the problem) and that corn is not on the riverbank (as we deduced
from all the other clauses in previous steps). This is impossible and so leads
to empty clause. Empty clause is always false and shows us that the original
expression is not satis�able.

Remember that in cases where there is more than two clauses containing the literal
on which you resolve, you have to resolve every combination of each clause which
contains the positive literal with each clause that contains its negation (in this case
it is ok � even necessary � to use the same clause several times). Only after that you
can mark the clauses involved as 'used'.

Since the expression de�ning the problem is unsatis�able, the problem is unsolvable
� there is no way to place a goose in either boat or riverbank and have it not eat corn
if the corn is in the boat and growing on the riverbank.

4. Example: Solvable Problem

4.1. De�ning the Problem

Problem:
There is a goose and a wolf. We can place each in a boat or on the riverbank. If we

4



put the goose and the wolf in the same place, the wolf will eat the goose. How should
we place the goose and the wolf to prevent this?

Corresponding boolean expression:

(GRB ∨GB) ∧ (WRB ∨WB) ∧ ¬(GRB ∧WRB) ∧ ¬(GB ∧WB)

where:

GRB � goose is on the riverbank
WRB � wolf is on the riverbank
GB � goose is in the boat
WB � wolf is in the boat

(GRB ∨GB) � goose is on the riverbank or in the boat
(WRB ∨WB) � wolf is on the riverbank or in the boat
¬(GRB ∧WRB) � goose and wolf cannot be together on the riverbank
¬(GB ∧WB) � goose and wolf cannot be together in the boat

Deriving an equivalent CNF expression by applying de Morgan law ¬(A ∧ B) ≡
(¬A ∨ ¬B) to the original expression:

(GRB ∨GB) ∧ (WRB ∨WB) ∧ (¬GRB ∨ ¬WRB) ∧ (¬GB ∨ ¬WB)

4.2. Applying Resolution

Note that the order of the variables to which we apply resolution does not matter
for the validity of the resolution. Here the clause that we currently resolve on is the
name of the column, and indices next to clauses indicate which step the clause was
used in.

GRB GB WB

{GRB,GB}1 {GB,¬WRB}2 {¬WB,¬WRB}3 {WRB,¬WRB}
{WRB,WB}3

{¬GRB,¬WRB}1

{¬GB,¬WB}2

After three steps of resolution, nothing more can be resolved and we did not derive
an empty clause, meaning the original expression was not inconsistent at any point -
it can be satis�ed.

4.3. Deriving a Satisfying Valuation

The last step of resolution informs us that to satisfy the original expression, it must
be true that wolf is on the riverbank or that the wolf is not on the riverbank (WRB∨

5



¬WRB). We are free to choose which part of the clause we want to make true:

a) choose WRB to be true. Once this is done, we move to the last but one step:
(¬WB ∨¬WRB). Since WRB is true, we have to make (¬WB) true - since the wolf
is on the riverbank, it cannot be on the boat. Next clause we have to make true is
(GB ∨ ¬WRB). As WRB is true, we have to make GB true in order to satisfy this
clause - since wolf is on the riverbank, the goose is in the boat. Finally we need to
take a look at the original clauses and see if they are all made true by our current
valuation. The only exception is (¬GRB ∨ ¬WRB) since ¬WRB is false and we
have not de�ned ¬GRB. Making GRB false will make this clause true and complete
our valuation.

Our derived valid valuation is: WRB-true, WB-false, GB-true, GRB-false.

b) choose WRB to be false. Once this is done, we move to the last but one step:
(¬WB ∨ ¬WRB). Since WRB is false, this clause is already made true. We are
not forced to make WB true or false to make it true, so for now we will refrain from
picking a value for it (that is necessary as you might �nd you will have to make one
of the remaining clauses true by picking a particular value for WB). Next clause we
have to make true is (GB ∨¬WRB). This is also made true by WRB being false, so
we move on. In the original clauses, since the false WRB appears in (WRB ∨WB),
we have to make WB true (since the wolf is not on the riverbank, it must be in the
boat). Negation of WB appears in (¬GB ∨ ¬WB), so we have to make ¬GB true:
since it is false that the wolf is not in the boat (the wolf is in the boat), we have
to make it true that the goose is not in the boat. Finally, since we made GB false,
(GRB ∨GB) can only be made true by making ¬GRB true (the goose is not in the
boat so it must be on the riverbank).

Our derived valid valuation is: WRB-false, WB-true, GB-false, GRB-true.

In other words, our problem has two solutions. We either put the wolf on the riverbank
and the goose in the boat (valuation a), or we put the wolf in the boat and the goose
on the riverbank (valuation b).

This example shows that you can make a di�erent decision at the beginning of assign-
ing values (choose WRB true or false) to satisfy clauses at the last step of resolution
(here,WRB∨¬WRB) and as long as you carefully assign values to remaining clauses,
you will be able to satisfy all clauses. Indeed, that is the guarantee that the resolution
principle gives you - if you can satisfy the simpler clause you derived, you are able to
satisfy the more complicated original expression.

For the Record

Note that if you were to model scenarios like the above, normally you would need
to account for the constraint that one entity cannot be in two places at the same

6



time (in other words, use xor instead of or in clauses like (GRB ∨GB)). Examples
presented here do not need that as the combination of constraints always implies it.
They were intentionally chosen as using or makes it easier to follow the argument.

For example, in the last problem we account for the fact that goose/wolf cannot be in
two places at the same time through a combination of the four constraints. If goose is
on the riverbank, then we will have to place the wolf in the boat, and they cannot be
together at the same time, so we cannot place the goose in the boat as well (there is
only two entities and two locations, each entity has to be in one of the two locations,
and no two entities can be in one location at the same time - therefore no entity can
be in both of these places).

These notes were created by Dagmara Niklasiewicz and revised by Michael Four-

man. Please send any questions, comments and feedback to Dagmara Niklasiewicz

at s1349662@sms.ed.ac.uk

7


