
Informatics 1
School of Informatics, University of Edinburgh

1

Temporal Modality

In this lecture you will be introduced to
logics for systems in which the things that
are true are relative to states of the world.

This allows logic to be used for problems
in which the things that are true may
change over time.

We apply this to the problem of analysing
a protocol.

Informatics 1
School of Informatics, University of Edinburgh

2

Problem: Banking Protocol

a(customer, C) :: buy ⇒ a(branch, B) then
 sell ⇐ a(branch, B) then
 a(customer, C)
a(branch, B) :: buy ⇐ a(customer, C) then
 check_funds(C) ⇒ a(bank, X) then
 has_funds(C) ⇐ a(bank, X) then
 sell ⇒ a(customer, C) then
 reconcile(C) ⇒ a(bank, X) then
 a(branch, B)
a(bank, X) :: ((check_funds(C) ⇐ a(branch, B) then
 has_funds(C) ⇒ a(branch, B)) or
 reconcile(C) ⇐ a(branch, B) then
 a(bank, X)

customer

branch

bank

buy
sell

check_funds

has_funds
reconcile

Are there flaws in this protocol?

Informatics 1
School of Informatics, University of Edinburgh

3

A State Sequence (S)

wakes_up(dave)
reads_mail(dave)

gives_lecture(dave)
reads_mail(dave)
goes_home(dave)

sleeps(dave)

S

access(J, S, F) means F is the Jth state in S
e.g. access(2, S, F) is true if
 F = reads_mail(dave)

Informatics 1
School of Informatics, University of Edinburgh

4

Proof Rules (Intra-State)

(S,J) A access(J, S, F) F A
(S,J) A and B (S,J) A (S,J) B
(S,J) A or B (S,J) A
(S,J) A or B (S,J) B

Proof Sub-proofs

(S,J) not(A) (S,J) A

access(J, S, F) means F is the Jth state in S

Informatics 1
School of Informatics, University of Edinburgh

5

Proof Rules (Inter-State)

(S,J) next(A)
(S,J) prev(A)
(S,J) e_future(A) (S,K) A for some K > J
(S,J) e_past(A) (S,K) B for some K < J

Proof Sub-proofs

(S,J) a_future(A) (S,K) A for all K > J
(S,J) a_past(A) (S,K) A for all K < J

(S,J+1) A
(S,J-1) A

Notice this can be inefficient.

Informatics 1
School of Informatics, University of Edinburgh

6

A Proof (1)

wakes_up(dave
reads_mail(dave)

gives_lecture(dave)
reads_mail(dave)
goes_home(dave)

sleeps(dave)

Given S

Show: wakes_up(dave) and e_future(sleeps(dave))

Informatics 1
School of Informatics, University of Edinburgh

7

A Proof (2)

wakes_up(dave
reads_mail(dave)

gives_lecture(dave)
reads_mail(dave)
goes_home(dave)

sleeps(dave)

S

(S, 1) wakes_up(dave) and e_future(sleeps(dave))

(S, 1) wakes_up(dave) (S, 1) e_future(sleeps(dave))

access(1, S, wakes_up(dave))
wakes_up(dave) wakes_up(dave)

(S, 6) sleeps(dave) 6 > 1

Informatics 1
School of Informatics, University of Edinburgh

8

Solution: Banking Protocol

• Express the problem in a way that can be
represented by temporal sequences.
• Then think of situations that could be
problematic and express these as temporal
properties.
• Then attempt to prove that the problematic
properties are true.

Informatics 1
School of Informatics, University of Edinburgh

9

A Message Sequence (S)

a(gossip, g1) :: tell ⇒ a(listener, l1) then
 go_on ⇐ a(listener, l1) then
 a(gossip, g1)
a(listener, l1) :: tell ⇐ a(gossip, g1) then
 go_on ⇒ a(gossip, g1) then
 a(listener, l1)

message(a(gossip, g1), tell ⇒ a(listener, l1))

message(a(listener, l1), tell ⇐ a(gossip, g1))

message(a(listener, l1), go_on ⇒ a(gossip, g1))

message(a(gossip, g1), go_on ⇐ a(listener, l1))

S

Informatics 1
School of Informatics, University of Edinburgh

10

Accessing States in a Sequence

access(J, S, F) means F is the Jth state in S

message(a(gossip, g1), tell ⇒ a(listener, l1))

message(a(listener, l1), tell ⇐ a(gossip, g1))

message(a(listener, l1), go_on ⇒ a(gossip, g1))

message(a(gossip, g1), go_on ⇐ a(listener, l1))

S

e.g. access(2, S, F) is true if
 F = message(a(listener, l1), tell ⇐ a(gossip, g1))

Informatics 1
School of Informatics, University of Edinburgh

11

Banking Protocol Sequence (S)

message(a(customer,c1), buy ⇒ a(branch,b1))

message(a(branch,b1), buy ⇐ a(customer,c1))

message(a(branch,b1), check_funds(c1) ⇒ a(bank,x1))

message(a(bank,x1), check_funds(c1) ⇐ a(branch,b1))

message(a(bank,x1), has_funds(c1) ⇒ a(branch,b1))

message(a(branch,b1), has_funds(c1) ⇐ a(bank,x1))

message(a(branch,b1), sell ⇒ a(customer,c1))

message(a(customer,c1), sell ⇐ a(branch,b1))

message(a(branch,b1), reconcile(c1) ⇒ a(bank,x1))

Time

Informatics 1
School of Informatics, University of Edinburgh

12

A customer is offered money by branch b1 and
subsequently that customer is offered money by branch b2 and
 subsequent to that branch b1 reconciles with the bank
 and so does b2 immediately afterwards.

Undesirable Temporal Property

message(a(customer,C),sell<=a(branch,b1)) and
e_future message(a(customer,C),sell<=a(branch,b2)) and
 e_future message(a(branch,b1),reconcile(C)=>a(bank,x1)) and
 next(message(a(branch,b2),reconcile(C)=>a(bank,x1)))

customer
C

branch
b1

branch
b2

bank
x1

sell

sell

reconcile(C)

reconcile(C)

Reconciling multiple transactions
after selling to the same customer.

Informatics 1
School of Informatics, University of Edinburgh

13

Sequence Satisfying Property
message(a(customer,c1), buy ⇒ a(branch,b1))
message(a(branch,b1), buy ⇐ a(customer,c1))

message(a(branch,b1), check_funds(c1) ⇒ a(bank,x1))
message(a(bank,x1), check_funds(c1) ⇐ a(branch,b1))

message(a(bank,x1), has_funds(c1) ⇒ a(branch,b1))
message(a(branch,b1), has_funds(c1) ⇐ a(bank,x1))

message(a(branch,b1), sell ⇒ a(customer,c1))
message(a(customer,c1), sell ⇐ a(branch,b1))
message(a(customer,c1), buy ⇒ a(branch,b2))
message(a(branch,b2), buy ⇐ a(customer,c1))

message(a(branch,b2), check_funds(c1) ⇒ a(bank,x1))
message(a(bank,x1), check_funds(c1) ⇐ a(branch,b2))

message(a(bank,x1), has_funds(c1) ⇒ a(branch,b2))
message(a(branch,b2), has_funds(c1) ⇐ a(bank,x1))

message(a(branch,b2), sell ⇒ a(customer,c1))
message(a(customer,c1), sell ⇐ a(branch,b2))

message(a(branch,b1), reconcile(c1) ⇒ a(bank,x1))
message(a(branch,b2), reconcile(c1) ⇒ a(bank,x1))

Informatics 1
School of Informatics, University of Edinburgh

14

Technical Things to Revise

l Expressing sentences in English as
quantified logical expressions.

l Proving tautology and inconsistency
using truth tables

l Given a set of proof rules, be able to
apply them to produce proofs at the
level of difficulty of those in the lectures
(you do not need to remember the
proof rules, but you do need to be able
to apply them – so practice that).

