
1 

Informatics 1 

School of Informatics, University of Edinburgh 

Resolution 

In this lecture you will see how to convert 

the “natural” proof system of previous 

lectures into one with fewer operators and 

only one proof rule. 

You will see how this proof system can be 

used to solve the important Satisfiability 

problem. 

Along the way we discuss equivalences 

between expressions and normal forms. 



2 

Informatics 1 

School of Informatics, University of Edinburgh 

Problem: Satisfiability  

 Given a set of Boolean constraints, can 
they all be satisfied at once? 

 This kind of problem arises, for 
example, in timetable scheduling 

 Formalization 

– Input: An expression in propositional logic 

– Question: Is there an assignment of 
Boolean values to the variables for which 
the expression evaluates to true? 



3 

Informatics 1 

School of Informatics, University of Edinburgh 

Examples 

 Let φ = (x or y) and (not(x) or y)  

 Setting x = true, y = true satisfies φ 

 Let φ’ = (x or y) and (not(x) or y) and 
(not(y)) 

 In this case, no assignment of truth 
values to variables makes formula true 

 One way of seeing this is to use the 
truth table method 

 But is there a more efficient algorithm 
for Satisfiability? 



4 

Informatics 1 

School of Informatics, University of Edinburgh 

Some Equivalence Rules 

De Morgan's Laws not (x or y)    =  (not(x) and not(y)) 

not (x and y) =  (not(x) or  not(y)) 

Associativity Laws x or (y or z)   =  (x or y) or z 

x and (y and z) =  (x and y) and z 

Commutativity Laws x or y =  y or x        x and y =  y and x 

Idempotent laws x or x = x                x and x = x 

Absorptive laws x or (x and y)  =  x =  x and (x or y) 

Identity laws  x or false = x         x and true = x 

(Left) Distributivity laws x or (y and z)  =  (x or y) and (x or z) 

x and (y or z)  =    (x and y) or (x and z) 

(Right) Distributivity laws (x and y) or z  =   (x or z)  and (y or z) 

(x or y) and z  =   (x and z) or  (y and z) 



5 

Informatics 1 

School of Informatics, University of Edinburgh 

Normal Forms 

It is not strictly necessary to use all the 

logical operators.  For example: 

A  B    is equivalent to     not(A) or B 

A  B    is equivalent to     not(A and not(B)) 

A or B    is equivalent to     not(not(A) and not(B)) 

and so on…. 

We can use this to convert any expression into 

An equivalent one with fewer operator types. 



6 

Informatics 1 

School of Informatics, University of Edinburgh 

Conjunctive Normal Form 
(CNF) 

For example: 

(a and not(b)  c)  and  a  and  not(c) 

becomes 

[ [not(a),b,c], [a], [not(c)] ] 

Any expression in our logic can be rewritten as 

a set of sets of propositions or their negations: 

                      [ [E1,E2,…], … , [En,…] ] 

Equivalent to ( (E1 or E2 or …) and … (En or …) ) 



7 

Informatics 1 

School of Informatics, University of Edinburgh 

What’s So Special About This? 

[ [E1,E2,…], … , [En,…] ] 

The order of expressions (like E1) 

in an “or” set doesn’t matter 

The order of sub-sets (like [E1,E2,…]) 

in the “and” set doesn’t matter 



8 

Informatics 1 

School of Informatics, University of Edinburgh 

Conversion to CNF 

(a and not(b)  c)  and  a  and  not(c) 

(not(a and not(b)) or c)  and  a  and  not(c) 

 not(P and Q)   equivalent to   not(P) or not(Q) 

(not(a) or not(not(b)) or c)  and  a  and  not(c) 

 not(not(P))   equivalent to   P 

 P  Q   equivalent to   not(P) or Q 

(not(a) or b or c)  and  a  and  not(c) 

(P or …) and …      to   [ [P,…],…] 

[ [not(a),b,c], [a], [not(c)] ] 



9 

Informatics 1 

School of Informatics, University of Edinburgh 

Showing Inconsistency 

Suppose I have [ [a], [not(a),b], [not(b),not(c)] ] 

and I want to know if this is inconsistent with c 

[c] 

[not(b)] 

[ ] 

c and not(c) can’t 

both be true 

not(b) and b can’t 

both be true 

Contradiction 

[not(b),not(c)] 

[not(a),b] 

[a] not(a) and a can’t 

both be true 

[not(a)] 



10 

Informatics 1 

School of Informatics, University of Edinburgh 

Proof by Inconsistency 

To prove  P  from   [ [E1,E2,…], … , [En,…] ] 

show that [ [not(P)], [E1,E2,…], … , [En,…] ] 

is inconsistent 



11 

Informatics 1 

School of Informatics, University of Edinburgh 

A Resolution Proof 

To prove  b  from   [ [not(a),b,c], [a], [not(c)] ] 

show that [ [not(b)], [not(a),b,c], [a], [not(c)] ] 

is inconsistent 

[not(b)] [not(a),b,c] 

[a] 

[not(c)] 

[not(a), c] 

[c] 

 [ ] 



12 

Informatics 1 

School of Informatics, University of Edinburgh 

One Proof Rule to Rule Them 
All 

 Suppose we have already derived 
clauses C1 and C2, where C1 contains 
the literal x and C2 contains the literal 
not(x) 

 Then we can derive the clause C1 – {x} 
U C2 – {not(x)} 

 Goal: To derive the empty clause, i.e., 
the clause with no literals 

 Clauses are inconsistent if and only if 
there is a way to derive empty clause 



13 

Informatics 1 

School of Informatics, University of Edinburgh 

Problem: Satisfiability 

 Is there a more efficient algorithm for 
Satisfiability than the truth table 
method? 

 Truth table method requires building a 
truth table of size 2n, where n is 
number of variables 

 Idea: Use Resolution to try to prove 
that the input formula is inconsistent 
(unsatisfiable) 

 



14 

Informatics 1 

School of Informatics, University of Edinburgh 

The Non-determinism Issue 

 Resolution, as we have defined it, is 
not an algorithm 

 There can be many options for which 
clauses to resolve at any point. Which 
to choose? 

 Example: [[not(a),b], [not(b), c], 
[not(c),a]] 

 In this case, every pair of clauses can 
be resolved 

 



15 

Informatics 1 

School of Informatics, University of Edinburgh 

Davis-Putnam Algorithm for 
Resolution 

 Choose an ordering of the variables 
(we will see how to do this with an 
example) 

 For i = 1 to n do 

– Stage i: Resolve all pairs of clauses such 
that one contains the i’th variable negated, 
and the other contains the i’th variable    
un-negated 

 Formula is unsatisfiable precisely when 
the empty clause occurs at the end 



16 

Informatics 1 

School of Informatics, University of Edinburgh 

An Example 

[[x,y], [x,z], [not(x), y,z], [not(z), y], [not[y]] 



17 

Informatics 1 

School of Informatics, University of Edinburgh 

An Example 

[[x,y], [x,z], [not(x), y,z], [not(z), y], [not[y]] 

[[x,y], [x,y], [not(x), y], [not(y]] 

 

       (Resolving on z) 



18 

Informatics 1 

School of Informatics, University of Edinburgh 

An Example 

[[x,y], [x,z], [not(x), y,z], [not(z), y], [not[y]] 

 [[x,y],  [not(x), y], [not(y]] 

 

       (Resolving on z) 



19 

Informatics 1 

School of Informatics, University of Edinburgh 

An Example 

[[x,y], [x,z], [not(x), y,z], [not(z), y], [not[y]] 

 [[x,y],  [not(x), y], [not(y]] 

 

        

    [[y], [not(y]] 

 

(Resolving on x) 



20 

Informatics 1 

School of Informatics, University of Edinburgh 

An Example 

[[x,y], [x,z], [not(x), y,z], [not(z), y], [not[y]] 

 [[x,y],  [not(x), y], [not(y]] 

 

        

    [[y], [not(y]] 

 

 

[[]] 

Unsatisfiable! 



21 

Informatics 1 

School of Informatics, University of Edinburgh 

Another Example 

[[x,y], [x,z], [not(z)], [not[y]] 



22 

Informatics 1 

School of Informatics, University of Edinburgh 

Another Example 

[[x,y], [x,z], [not(z)], [not[y]] 

[[x], [x,z], [not(z)]] 

 

(Resolving on y) 



23 

Informatics 1 

School of Informatics, University of Edinburgh 

Another Example 

[[x,y], [x,z], [not(z)], [not[y]] 

[[x], [x,z], [not(z)]] 

 

 

       [[x]] 

 

(Resolving on z) 



24 

Informatics 1 

School of Informatics, University of Edinburgh 

Another Example 

[[x,y], [x,z], [not(z)], [not[y]] 

[[x], [x,z], [not(z)]] 

 

 

       [[x]] 

 

 

Satisfiable! 



25 

Informatics 1 

School of Informatics, University of Edinburgh 

Things to Practice 

 Convert some expressions involving all 
the connectives into CNF 

 Try some resolution proofs, and some 
runs of the Davis-Putnam algorithm  


