
1 

Informatics 1 

School of Informatics, University of Edinburgh 

More on Logical Implication 

  p  q  is defined to be ((not(p)) or q) 

 But how does this connect with intuitive 
meaning of implication? 

 A truth value implies itself, so t  t and 
f  f both evaluate to t 

 Anything implies the truth, so f  t 
evaluates to t 

 However, something true cannot imply 
something false, so t  f evaluates to f 



2 

Informatics 1 

School of Informatics, University of Edinburgh 

Clicker Question 

 Is (not(p))  p  

1. Tautology 

2. Contingency 

3. Contradiction ? 

 



3 

Informatics 1 

School of Informatics, University of Edinburgh 

Sequent Calculus 

In this lecture we move from truth tables to a 

more sophisticated (and sometimes more 

natural) form of proof. 

 

We explain by example the relevance of this 

to database manipulation and checking 

English grammar. 

 

Along the way we encounter the issue of 

completeness of a proof system.  



4 

Informatics 1 

School of Informatics, University of Edinburgh 

Problem: Database Join 

name sex age 

dave 

mary 

phil 

male 

female 

male 

42 

21 

64 

name ID 

dave 

mary 

phil 

2345 

6782 

7934 

ken 9324 

employee lecturer 

dave 

mary 

male 

female 

42 

21 

name sex age ID 

2345 

6782 

new 

lecturer name = employee name 

age < 50 



5 

Informatics 1 

School of Informatics, University of Edinburgh 

Problem: English Grammar 

sentence    nounphrase, verbphrase 

nounphrase  noun  |  determiner, noun 

verbphrase  verb  |  verb, nounphrase 

noun  verb  determiner  noun 

Dave bites      the          dust 

nounphrase 

verbphrase nounphrase 

sentence 

Sequence 

Parse 

Grammar 



6 

Informatics 1 

School of Informatics, University of Edinburgh 

A Little More Notation 

F    A 

[ A|F ] 

A  F 

Where F is a sequence of expressions 

 [ E1,E2,… ] 

means that A can be proved from F 

adds A to F to make a larger sequence 

is true if A appears in F 



7 

Informatics 1 

School of Informatics, University of Edinburgh 

A Set of Proof Rules 

F    A None (A  F) 

F    A and B F    A F    B 

F    A or B F    A 

F    A or B F    B 

F    C (A or B  F) [ A|F ]    C [ B|F ]    C 

F    B (A  B  F) F    A 

F    A  B [ A|F ]    B 

Sequent Already derived sequent(s) 



8 

Informatics 1 

School of Informatics, University of Edinburgh 

Difference from Truth Tables 

[p(a), p(X)  p(f(X))]    p(f(f(a))) 

isn’t readily proved via a truth table but a proof is: 

[p(a), p(X)  p(f(X))]    p(f(f(a))) 

p(f(a))  p(f(f(a)))  [p(a), p(X)  p(f(X))] 

[p(a), p(X)  p(f(X))]    p(f(a)) 

p(a)  p(f(a))  [p(a), p(X)  p(f(X))] 

[p(a), p(X)  p(f(X))]    p(a) 

p(a)  [p(a), p(X)  p(f(X))] 



9 

Informatics 1 

School of Informatics, University of Edinburgh 

Better Than Truth Tables? 

We can deal with proofs that truth tables 

can’t handle but the particular proof rules we 

gave are not able to prove all the things we 

could prove from the truth tables: 

• We can’t prove not(p and not(p)) 

• We can’t prove (a and b)  a or b 

We can deal with these limitations by adding 

more proof rules and axioms. 



10 

Informatics 1 

School of Informatics, University of Edinburgh 

In General 

For any system of logic we can ask the 

following questions: 

• Is it sound (it can give no incorrect answers)? 

• Is it complete (it can give all correct answers)? 

• Is it decidable (it actually will find all answers)? 



11 

Informatics 1 

School of Informatics, University of Edinburgh 

A Larger Proof Tree 

[B  C]    (A or B)  (A or C) 

[(A or B), B  C]    (A or C) 

(A or B)  [(A or B), B  C] 

[A, (A or B), B  C]    (A or C) 

[B, (A or B), B  C]    (A or C) 
[A, (A or B), B  C]    A 

A  [A, (A or B), B  C] [B, (A or B), B  C]    C 

B  C  [B, (A or B), B  C] [B, (A or B), B  C]    B 

B  [B, (A or B), B  C] 



12 

Informatics 1 

School of Informatics, University of Edinburgh 

A Proof Strategy 

F    A A  F 

F    A and B F    A F    B 

F    A or B F    A 

F    A or B F    B 

F    C A or B  F [ A|F ]    C [ B|F ]    C 

F    B A  B  F F    A 

F    A  B [ A|F ]    B 

Sequent Pre-derived Try this first 

Then this for an “and” 

Then these for an “or” 

Then this for an “” 

Otherwise one 

of these 



13 

Informatics 1 

School of Informatics, University of Edinburgh 

Solution: Database Join (1) 

name sex age 

dave 

mary 

phil 

male 

female 

male 

42 

21 

64 

name ID 

dave 

mary 

phil 

2345 

6782 

7934 

ken 9324 

employee lecturer 

lecturer(dave, male, 42) 

lecturer(mary, female, 21) 

lecturer(phil, male, 64) 

employee(dave, 2345) 

employee(ken, 9324) 

employee(mary, 6782) 

employee(phil, 7934) 

lecturer(N,S,A)  
name(N) and 

sex(S) and 

age(A) employee(N,I)  name(N) 

and id(I) 



14 

Informatics 1 

School of Informatics, University of Edinburgh 

Solution: Database Join (2) 

 new(N1,S,A,I) 

lecturer(N1,S,A) and 

employee(N2,I) and 

N1 = N2 and 

A < 50 

employee(dave, 2345) 

employee(ken, 9324) 

employee(mary, 6782) 

employee(phil, 7934) 

lecturer(dave, male, 42) 

lecturer(mary, female, 21) 

lecturer(phil, male, 64) 

new(dave, male, 42, 2345) 

new(mary, female, 21, 6782) 

dave 

mary 

male 

female 

42 

21 

name sex age ID 

2345 

6782 

new 



15 

Informatics 1 

School of Informatics, University of Edinburgh 

Solution: English Grammar (1) 

sentence  =  concatenation of nounphrase with verbphrase 

nounphrase = noun  or  concatenation of determiner with  noun 

verbphrase = verb  or  concatenation of verb with nounphrase 

noun = [Dave] or [dust] 

verb = [bites] 

determiner = [the] 

nounphrase(S1) and verbphrase(S2) and  c(S1,S2,S)  sentence(S) 

noun(S) or (determiner(S1) and noun(S2) and c(S1,S2,S))  nounphrase(S) 

verb(S) or (verb(S1) and nounphrase(S2) and c(S1,S2,S))  verbphrase(S)  

noun([Dave])    noun([dust]) 

verb([bites]) 

determiner([the]) 

To logic 



16 

Informatics 1 

School of Informatics, University of Edinburgh 

Solution: English Grammar (2) 

nounphrase(S1) and verbphrase(S2) and  c(S1,S2,S)  sentence(S) 

noun(S) or (determiner(S1) and noun(S2) and c(S1,S2,S))  nounphrase(S) 

verb(S) or (verb(S1) and nounphrase(S2) and c(S1,S2,S))  verbphrase(S)  

c([Dave],[bites,the,dust],[Dave,bites,the,dust]) noun([Dave]) 

verb([bites]) 

c([bites],[the,dust],[bites,the,dust]) 

noun([dust]) 

determiner([the]) 

c([the],[dust],[the,dust]) 

nounphrase([the,dust]) 

verbphrase([bites,the,dust]) 

nounphrase([Dave]) 

sentence([Dave,bites,the,dust]) 



17 

Informatics 1 

School of Informatics, University of Edinburgh 

Things to Practice 

 Try some sequent proofs of simple 
propositional expressions.  You will get 
some examples in your tutorial - try 
more. 

 Try some proofs where the 
expressions you use as axioms contain 
variables (like those in the database 
and grammar examples) so you get 
used to matching variables and 
constants during a proof. 


