
Informatics 1

School of Informatics, University of Edinburgh 1

Resources

 Lecturer: Rahul Santhanam (rsanthan@inf.ed.ac.uk)

 TA: Areti Manataki (A.Manataki@ed.ac.uk)

 All notes and tutorials are on the course Web site at:
www.inf.ed.ac.uk/teaching/courses/inf1/cl/

 Tutorial each week

 Lecture slides will be on course web site

 Schedule of lectures in weeks 2-5 rather non-standard:
refer to First Year Handbook for details

mailto:rsanthan@inf.ed.ac.uk

Informatics 1

School of Informatics, University of Edinburgh

Describing Information
Systems in Logic

Logic is the ``calculus of computer science''

[Manna & Waldinger 85].

In the next seven lectures you will encounter a way of

describing information and the processing of information

that is precise while remaining independent of any

particular computing machine.

This lecture starts you describing information in logic.

In the remaining six lectures we solve problems via

inference.

Informatics 1

School of Informatics, University of Edinburgh

A Brief History of Logic

• 500 BC - 19th Century: Logic as discipline

 in human argument.

• mid-late 19th Century: Logic begins to be

 understood as a mathematical language.

• late 19th - mid 20th Century: Study of

 mathematical proof and its limitations.

• mid 20th Century – date: Logic in

 informatics.

Informatics 1

School of Informatics, University of Edinburgh

What Use is Logic?

• The gates in computer circuits implement Boolean logic.

• Some problems resist solution no matter how fast we build our

 computers, but we can explore these problems in logic.

• Some programming languages (e.g. database query

 languages) are close to logic.

• Logic is used to define semantics of languages so these can

 be compared.

• Logic is used in verifying systems and security protocols.

• The lingua franca for many areas of informatics research

 is logic.

Informatics 1

School of Informatics, University of Edinburgh

Motivating Problem

Informatics 1

School of Informatics, University of Edinburgh

Motivating Problem (Data)

film(F) means F is a film

actor(F, P) means that person P acted in film F

director(F, P) means that person P directed film F

oscar(X) means that X got an Oscar

film('Mars Attacks')

director('Mars Attacks','Tim Burton')

actor('Mars Attacks','Jack Nicholson')

actor('Mars Attacks','Glenn Close')

oscar('Jack Nicholson')

oscar('Glenn Close')

Informatics 1

School of Informatics, University of Edinburgh

Motivating Problem (Query)

How could we describe precisely the following

questions about our data?

• Which Oscar-winning films were directed by an actor?

• Which Oscar winning actors have directed themselves?

• Which directors have directed more than one film?

• Which films have more than one director?

• Have all directors been actors?

Informatics 1

School of Informatics, University of Edinburgh

Notation

X.p(a, X) and q(X)  Y.r(X, Y)

p(a,X) p is a predicate name

 a is a constant

 X is a variable

not P Negation of P

P and Q P and Q are true (conjunction)

P or Q P or Q is true (disjunction)

P  Q P implies Q

P  Q P and Q are equivalent

X. s(X) For all X, s is true

X. s(X) For some X, s is true

Informatics 1

School of Informatics, University of Edinburgh

Precedence of Operators

We take the precedence ordering to be the following:

• ‘’ and ‘’ dominate most.

• ‘and’ and ‘or’ are next most dominant.

• ‘not’ is least dominant.

• If equal dominance, the operator on the right dominates.

So we can write:

 ((a and b) or c)  d

as

 a and b or c  d

Informatics 1

School of Informatics, University of Edinburgh

Why There are Many Ways to
Describe the Same Concept

• Ambiguity in Understanding the World

• Boundary Choices

• Equivalences Between Formal Expressions

• Differences in Logical Systems

Informatics 1

School of Informatics, University of Edinburgh

Ambiguity in Understanding
the World

You observe that this classroom is crowded.

Is it:

• Full?

• Almost full?

• At over 80% of capacity?

• Being held to ransom by a geek who

believes in ruminating over logic at

lunchtime?

Informatics 1

School of Informatics, University of Edinburgh

Boundary Choices

oscar(P) means that P got an Oscar.

Doesn't tell us which film, F

oscar_winner(P, F)  oscar(P)

or which time, T.

oscar_win(P, F, T)  oscar_winner(P, F)

At some stage, however, we must choose a level of

description adequate for the task we wish to undertake

and consider other information to be outside the

boundary of our model.

Informatics 1

School of Informatics, University of Edinburgh

Equivalences Between
Formal Expressions

a  b is equivalent to not(a) or b

So which is it better to say?

Depends on how you want to use it to

solve a problem and who has to read it.

Informatics 1

School of Informatics, University of Edinburgh

Differences between Logical
Systems

 Propositional logic or predicate logic?

– In propositional logic, easier to decide truth
or falsity of statements

– However, predicate logic provides richer
framework for representing data

Various other logics to choose from
as well

Informatics 1

School of Informatics, University of Edinburgh

Similarity Between
Expressions

Exploring dualities between common forms

of expression to deepen our understanding

of what the expressions mean.

In a later lecture you find out how to prove

the dualities we introduce now.

Informatics 1

School of Informatics, University of Edinburgh

Implication Versus
Conjunction With Negation

a  b is equivalent to not(a) or b

(Suggested read: “What the Tortoise

Said to Achilles” by Lewis Carroll)

Informatics 1

School of Informatics, University of Edinburgh

Conjunction Versus
Disjunction

a and b is equivalent to not(not(a) or not(b))

a or b is equivalent to not(not(a) and not(b))

Informatics 1

School of Informatics, University of Edinburgh

Universal Quantification
Versus Conjunction

If all instances of X are a1,a2, … an then

X. p(X) is equivalent to p(a1) and p(a2) and … p(an)

Informatics 1

School of Informatics, University of Edinburgh

Existential Quantification
Versus Disjunction

If all instances of X are a1,a2, … an then

 X. p(X) is equivalent to p(a1) or p(a2) or … p(an)

Informatics 1

School of Informatics, University of Edinburgh

Solving Our Problem (Query 1)

F,P. oscar(F) and director(F,P) and F1.actor(F1, P)

Which Oscar-winning films were directed by an actor?

Prove that there exists an Oscar winning film and

its director and there exists a film in which that

director was a film actor.

Informatics 1

School of Informatics, University of Edinburgh

Solving Our Problem (Query 2)

Which Oscar winning actors have directed

themselves?

F,P. oscar(P) and actor(F,P) and director(F, P)

Prove that there exists a film and an oscar

winning actor in it and the same person is a

director of that film.

Informatics 1

School of Informatics, University of Edinburgh

Solving Our Problem (Query 3)

Which directors have directed more than one film?

F1,F2,P. director(F1, P) and

 director(F2, P) and

 not(F1 = F2)

Prove that there exists two films with the same

director and these are not the same film.

Informatics 1

School of Informatics, University of Edinburgh

Solving Our Problem (Query 4)

Which films have more than one director?

F,P1,P2. director(F, P1) and

 director(F, P2) and

 not(P1 = P2)

Prove that there exists a film for which there

exists two directors and these are not the

same person.

Informatics 1

School of Informatics, University of Edinburgh

Solving Our Problem (Query 5)

Have all directors been actors?

P,F1.director(F1,P)  F2.actor(F2,P)

Prove that all directors of films are

actors in some film

