
Contents

1 Describing Information Systems in Logic 3

1.1 Motivating Problems . 3

1.2 Notation . 4

1.3 Why There are Many Ways to Describe the Same Concept 5

1.3.1 Ambiguity in Understanding the World 5

1.3.2 Boundary Choices . 5

1.3.3 Equivalences Between Formal Expressions 6

1.3.4 Differences in Logical Systems 6

1.4 On the Similarity Between Expressions 6

1.4.1 Implication Versus Conjunction With Negation 7

1.4.2 Conjunction Versus Disjunction 7

1.4.3 Universal Quantification Versus Conjunction 7

1.4.4 Existential Quantification Versus Disjunction 7

1.5 Solving The Problems of Section 1.1 8

1.5.1 Solving Problem 1: Describing Data 8

2 Basics of Propositional Logic 9

2.1 Motivating Problems . 9

2.2 Truth Tables . 10

2.3 Solving The Problems of Section 2.1 12

2.3.1 Solving Problem 2: Proving Equivalence 12

2.3.2 Solving Problem 3: Attaining Common Knowledge 13

3 Proof With More Complex Expressions: Sequent Calculus 15

1

CONTENTS CONTENTS

3.1 Motivating Problems . 15

3.2 Proofs From Assumptions . 16

3.3 Solving The Problems of Section 3.1 18

3.3.1 Solving Problem 4: Joining Relational Data 18

3.3.2 Solving Problem 5: Grammars as Logic 21

4 Negation and Contradiction 23

4.1 Motivating Problems . 23

4.2 A Proof System Including Negation 24

4.3 The Closed World Assumption . 24

4.4 Solving The Problems of Section 4.1 27

4.4.1 Solving Problem 6: Limits of Perceptrons 27

5 Proofs Using One Proof Rule: Resolution 31

5.1 Motivating Problems . 31

5.2 Normal Forms . 32

5.3 Resolution . 33

5.4 Solving The Problems of Section 5.1 34

5.4.1 Solving Problem 7: Logic Programs 34

6 Proofs and State Change: Modal Logic 37

6.1 Motivating Problems . 37

6.2 A Basic Temporal Logic . 38

6.3 Solving The Problems of Section 6.1 38

6.3.1 Solving Problem 8: Protocol Verification 38

A Notation: Well Formed Expressions 41

B Conversion to Clausal Form 43

2

Chapter 1

Describing Information Systems in
Logic

In these lecture notes you will encounter a way of describing information and
the processing of information that is precise while remaining independent of any
particular computing machine. This chapter starts you describing information
in logic, in preparation for subsequent chapters where we use formally described
information to solve problems via inference.

1.1 Motivating Problems

Problem 1 Suppose you have data describing films; their directors; their actors
and actresses. Each data item is described using the following expressions: film(F)
means F is a film; actor(F, P) means that person P acted in film F ; director(F, P)
means that person P directed film F ; oscar(X) means that X (which can be a per-
son or a film) got an Oscar. For example, the film “Mars Attacks” was directed

by Tim Burton with Jack Nicholson and Glenn Close (both Oscar winners) being

actors in it so
film(′MarsAttacks′)
director(′MarsAttacks′, ′TimBurton′)
actor(′MarsAttacks′, ′JackNicholson′)
actor(′MarsAttacks′, ′GlennClose′)
oscar(′JackNicholson′)
oscar(′GlennClose′)

are true.

How could we describe precisely the following questions about our data?

• Which Oscar-winning films were directed by an actor?

• Which Oscar winning actors or actresses have directed themselves?

• Which directors have directed more than one film?

3

Describing Information Systems in Logic Informatics 1 25.09.2006

• Which films have more than one director?

1.2 Notation

The notation used in these notes - First Order Predicate Logic - is defined pre-
cisely in Appendix A. Before reading that, here is a guide to writing in this sort
of notation. In what follows (and in the rest of these notes) I use the word “ex-
pression” to refer to something written formally in this style.

The basic element of an expression is a predicate. A predicate has a name
and zero or more arguments, written P (A1, . . . , An) where P is the predicate name
and each A is an argument. Predicates can either be true or false in whatever
model of the world we describe. Predicate names are constants - that is, they
refer to a specific thing in our model of the world. Arguments may be constants
or variables. A variable is a way of referring to a thing without saying which
specific thing it is. So if eats(A, B) means (in general) that A eats B then by
writing eats(dave, nemo) we say that the thing called dave eats the thing called
nemo. What if we want to say that “everything eats something”? Then we need
variables so that we can refer to things without committing to specific things but
we also need to use the variables in two different ways: the “everything” refers to
all things while the “something” is looking for only one (at least). To differentiate
these two uses of a variable we use quantifiers: a universal quantifier (written
∀A where A is the quantified variable) for the former case and an existential
quantifier (written ∃B where B is the quantified variable) for the latter case. So
“everything eats something” could be written as ∀A.∃B.eats(A, B).

In addition to describing individual predicates it is useful also to be able to
describe conjunctions of expressions (written E1 and E2); disjunctions of expres-
sions (written E1 or E2); implications (written E1 → E2) and negations (written
not(E)). Any of the Es in these expressions can themselves be expressions so
we can write things like ((a and b) or c) → d. To make these easier to read we
agree that some operators dominate others. This is referred to as establishing
the precedence of operators. In the absence of explicit bracketing, the operator
with the highest precedence will be the principal operator in an expression.

We take the precedence ordering to be the following:

• → and ↔ have highest precedence.

• and and or have next highest precedence.

• not has lowest precedence.

• In cases where two operators of equal precedence appear in an expression
and there is no bracketing to impose an explicit ordering on the operators,
then the operator furthest to the right is taken as the principal operator.

4

Describing Information Systems in Logic Informatics 1 25.09.2006

Given this convention we can write ((a and b) or c)→ d as a and b or c→ d which
is easier on the eye.

1.3 Why There are Many Ways to Describe the Same

Concept

Once you start writing formal descriptions you will find that there are many ways
of saying essentially the same thing. Let’s consider the reasons for this.

1.3.1 Ambiguity in Understanding the World

When we observe something it is normally difficult for us to be precise about
what we have observed. Suppose, for example, that you observe someone (call
him Dave) with hair thinning on top of his head. How would you describe this?
You might simply say he is bald but perhaps that is too crude a statement. Maybe
it would be more accurate to say he is “going bald” or that he is “partially bald”.
Perhaps you might even have a quantititative measure of “hair follicle density”
and rate him on that scale. None of these are absolutely right or wrong. In the
end you will choose your formal description based on your experience in writing
and using such descriptions.

1.3.2 Boundary Choices

There is always a choice about what to represent explicitly in our formal model
and what to treat as a primitive, indivisible concept. For instance, in the film
example of Problem 1 we used the predicate oscar(X) to denote that some person
or film won an Oscar. This is the right level of detail if our concern is only to
identify oscar winning people in some absolute sense but it does not represent
which specific films gave each person their Oscars - for that we would need a
predicate like oscar winner(P, F) which relates a person P to a film F in which
they won an Oscar. Does the date at which they won the oscar matter? If so, we
might have a more detailed predicate, oscar win(P, F, T), which is as before but
with T being the time at which the Oscar was awarded. We could continue to
expand the detail of our description and, with this, expand the interrelationships
we make between the elements of our description, such as:

oscar win(P, F, T)→ oscar winner(P, F) and oscar(P)

At some stage, however, we must choose a level of description adequate for
the task we wish to undertake and consider other information to be outside the
boundary of our model.

5

Describing Information Systems in Logic Informatics 1 25.09.2006

1.3.3 Equivalences Between Formal Expressions

Even when we believe we have a resolution to the issues of ambiguity and bound-
ary we still have choices to make because the same thing may be said formally
in many different ways. How we choose which way to say something depends
partly on elegance of expression - the ability to say exactly what is needed with
the minimum of representational effort - and partly on the sorts of inference we
wish to perform. For example it is true that a → b is equivalent to not(a) or b (if
you don’t believe this yet then by the end of the next chapter you will be able
to prove it). Logically there is no reason to prefer one over the other but prag-
matically there may be strong preferences either way - for example a → b might
feel more “natural” in human terms or, alternatively, not(a) or b might better suit
certain forms of inference (such as Resolution which you meet in a later chapter).

1.3.4 Differences in Logical Systems

Connected with the variant of formal expression we use is the choice of which
system of logic to employ. Here there often is a tension between, at one extreme,
using a logic with a simple representation for which inference may be extensive
versus, at the other extreme, using a logic that allows more complex forms of
representation but less extensive inference. For instance, in Chapter 2 you will
encounter basic Propositional Logic in which no variables are allowed in expres-
sions. The representation is therefore simplified and it is always possible in this
logic to decide automatically the truth or falsity of any given expression. Once
we move to First Order Logic, in Chapters 3 and beyond, we are able to describe
things in a more sophisticated way but we may not always be able automati-
cally to decide the truth or falsity of each expression we can write. To ameliorate
this problem (and to make certain kinds of sophisticated representation easier
to do) there are many variants of logic tuned to particular types of problem. In
Chapter 6 you will encounter an example of a logic intended for problems where
temporal change to the state of a system is important. All of the variants of logic
you will see here are essentially the same - they can all be understood as predi-
cate logic - but they have pragmatic differences according to their intended use.
Experts in applied logic are good at making the right pragmatic choices.

1.4 On the Similarity Between Expressions

Section 1.3.3 raised the issue that we can in logic have many different ways of
expressing the same concept. We now explore this issue a little further but, this
time, with the aim of using dualities between forms of expression to deepen our
understanding of what the expressions mean.

6

Describing Information Systems in Logic Informatics 1 25.09.2006

1.4.1 Implication Versus Conjunction With Negation

What do we mean when we say that “A implies B”. In human conversation we
sometimes mean radically different things but in the logics e consider here we
mean only one thing: that B is true whenever A is true. Stated without using
implication, this is the same as saying that either B is true or A is not true (since
if A is true then implication means that B must be true as well). Formally:

a→ b is equivalent to not(a) or b

This helps us understand why implication (in this logical sense) is not the
same as causality. Saying that A implies B in this formal way is not the same as
saying that A causes B to be true. All we are saying is that whenever we observe
A we also will observe B, although the actual causes of B might be something
different from A.

1.4.2 Conjunction Versus Disjunction

Negation allows us to interchange conjunctions with disjunctions. The principle
is that if we say A and B are both true then this is the same as saying neither is
false. Similarly if we say A or B is true then this is the same as saying that they
cannot both be false. Formally:

a and b is equivalent to not(not(a) or not(b))
a or b is equivalent to not(not(a) and not(b))

1.4.3 Universal Quantification Versus Conjunction

When we universally quantify a variable we are saying that any object could
match that variable, so for example if there are only two objects in our model
of the world, call them x and y then ∀X.p(X) would in this circumstance be the
same as saying p(x) and p(y). Expressing this more generally:

If all instances of X are a1, a2, . . . an then
∀X.p(X) is equivalent to p(a1) and p(a2) and . . . p(an)

1.4.4 Existential Quantification Versus Disjunction

When we existentially quantify a variable we are saying that some object should
match that variable, so for example if there are only two objects in our model
of the world, call them x and y then ∃X.p(X) would in this circumstance be the
same as saying p(x) or p(y). Expressing this more generally:

7

Describing Information Systems in Logic Informatics 1 25.09.2006

If all instances of X are a1, a2, . . . an then
∃X.p(X) is equivalent to p(a1) or p(a2) or . . . p(an)

1.5 Solving The Problems of Section 1.1

1.5.1 Solving Problem 1: Describing Data

Each of the questions of Problem 1 can be described as a conjunctive (“and-ed”)
expression where the conjunction relates variables and satisfying the expression
requires us to find an instance of the variables satisfying the whole conjunctive
expression. Here are the appropriate expressions:

• Which Oscar-winning films were directed by an actor?
∃F, P.oscar(F) and director(F, P) and ∃F1.actor(F1, P)

• Which Oscar winning actors or actresses have directed themselves?
∃P, F.oscar(P) and actor(F, P) and director(F, P)

• Which directors have directed more than one film?
∃F1, F2, P.director(F1, P) and director(F2, P) and not(F1 = F2)

• Which films have more than one director?
∃F, P1, P2.director(F, P1) and director(F, P2) and not(P1 = P2)

8

Chapter 2

Basics of Propositional Logic

In this chapter we discuss a basic method for determining the truth or falsity of
logical expressions that do not contain variables.

2.1 Motivating Problems

Problem 2 Each of the two logic circuits below takes two inputs (i1 and i2) and
produces an output (o1). Inputs and outputs are either 0 or 1. The circuits are

built using three type of logic gate: a “not” gate takes an input and produces the

opposite output (input 1 gives output 0; input 0 gives output 1); an “and” gate gives

output 1 if both inputs are 1 but gives output of 0 otherwise; an “or” gate gives

output 1 if either input is 1 but gives output of 0 otherwise. Would the two circuits

always do the same thing?

i1

i2

not

or o1 not

and noti1

i2

o1

Problem 3 Imagine a society in which husbands must remain faithful to their
wives, otherwise their wives will shoot them (without fail) on the day they find

out. One day a group of three married women is brought to the police station and

told that some of their husbands are cheating on them. Each wife knows whether

or not the others’ husbands are faithful but does not know whether her own hus-

band is faithful. On this first day no husbands are shot. The next day the same

group of women is brought together again and informed that, so far, no husband

has been shot. Again, no husbands are shot. On the third day, however, the

group is re-convened and that day there is shooting. How many husbands were

unfaithful?

9

Basics of Propositional Logic Informatics 1 25.09.2006

P Q not(P) P and Q P or Q P → Q P ↔ Q

t t f t t t t

t f f f t f f

f t t f t t f

f f t f f t t

Figure 2.1: A Truth Table

2.2 Truth Tables

Recall that the truth–functional connectives are so called because they evaluate
to either true or false, depending on the truth values of the sub–expressions
that they connect. We can enumerate all the possible results of this evaluation
for each of the connectives, as shown in the table in Figure 2.1. This table is
normally referred to as a truth table. To form this table, we write down (in the
first two columns) all possible combinations of truth values for expressions P

and Q. We then make a column for each connective applied to P and/or Q and
enter the appropriate truth value for each row. We use the letter ‘t’ to represent
truth and ‘f’ to denote falsity.

Since we can now allocate truth values to all the connectives of the propo-
sitional logic, we are able to determine the truth or falsity of any expression in
the logic, given the truth values of all the atomic propositions contained in it.
This is done by progressively evaluating the truth of each sub–expression, start-
ing with the connectives joining atomic propositions and propagating the truth
values “higher up” in the structure of the expression. Using this method we can
distinguish several useful categories of expression:

• Tautologies: where the expression is always true regardless of the truth
values of the propositions that it contains. A simplest form of tautology is P
or not P. An example expression (P and (P → Q))→ Q is also a tautology, as
we shall demonstrate later.

• Contradiction or Inconsistent expressions: where the expression is al-
ways false regardless of the truth values of the propositions that it contains.
For instance, the expression P and not P is always inconsistent.

• Contingent expressions: where the expression is sometimes true and some-
times false, depending on the truth values of the propositions that it con-
tains. The expression P and Q→ R is an example.

Figure 2.2 contains a detailed example of this method of establishing truth
values. The goal is to prove that (P and (P → Q)) → Q is a tautology. To do this,
we enumerate each possible combination of truth values for P and Q (giving 4
combinations in all) and, for each combination, propagate the truth values up
through the structure of the expression. The curly braces show the truth values

10

Basics of Propositional Logic Informatics 1 25.09.2006

Goal: to prove that (P and (P → Q)) → Q is a tau-
tology. Consider every possible combination of truth
values for P and Q:

If P is true and Q is true then the expression is true:
(P
︸︷︷︸

t

and (P
︸︷︷︸

t

→ Q
︸︷︷︸

t

)

︸ ︷︷ ︸

t

)

︸ ︷︷ ︸

t

→ Q
︸︷︷︸

t

︸ ︷︷ ︸

t

If P is true and Q is false then the expression is true:
(P
︸︷︷︸

t

and (P
︸︷︷︸

t

→ Q
︸︷︷︸

f

)

︸ ︷︷ ︸

f

)

︸ ︷︷ ︸

f

→ Q
︸︷︷︸

f

︸ ︷︷ ︸

t

If P is false and Q is true then the expression is true:
(P
︸︷︷︸

f

and (P
︸︷︷︸

f

→ Q
︸︷︷︸

t

)

︸ ︷︷ ︸

t

)

︸ ︷︷ ︸

f

→ Q
︸︷︷︸

t

︸ ︷︷ ︸

t

If P is false and Q is false then the expression is true:
(P
︸︷︷︸

f

and (P
︸︷︷︸

f

→ Q
︸︷︷︸

f

)

︸ ︷︷ ︸

t

)

︸ ︷︷ ︸

f

→ Q
︸︷︷︸

f

︸ ︷︷ ︸

t

Since the expression is true for all truth values of P

and Q, it is a tautology.

Figure 2.2: Proving that (P and (P → Q))→ Q is a tautology

11

Basics of Propositional Logic Informatics 1 25.09.2006

Goal: to prove that P and not(P) is inconsistent. Con-
sider every possible assignment of truth values for P :

If P is true then the expression is false:
P

︸︷︷︸

t

∧not(P
︸︷︷︸

t

)

︸ ︷︷ ︸

f
︸ ︷︷ ︸

f

If P is false then the expression is false:
P

︸︷︷︸

f

and not(P
︸︷︷︸

f

)

︸ ︷︷ ︸

t
︸ ︷︷ ︸

f

Since the expression is false for all truth values of P

it is a contradiction.

Figure 2.3: Proving that P and not(P) is inconsistent

assigned to each part of an expression during this process. The final truth value
assigned to each of the 4 expressions is ‘true’ so this expression is a tautology.

Proving that an expression is inconsistent is also straightforward. An exam-
ple appears in Figure 2.3. Again, we establish the truth value for the entire
expression, given each truth value for P . Whatever truth value we assign to P

the expression is false so it is inconsistent.

2.3 Solving The Problems of Section 2.1

2.3.1 Solving Problem 2: Proving Equivalence

We can represent each of the logic circuits of Problem 2 as a logical expression.
The circuit on the left is the expression not(i1) or i2 and the circuit on the right is
the expression not(i1 and not(i2)). The output of each circuit (o1) then corresponds
to the truth value of its corresponding logical expression, given the truth values
of the inputs (i1 and i2). Now we can draw truth tables for the expressions, as
shown below.

i1 i2 not(i1) not(i2) not(i1) or i2 i1 and not(i2) not(i1 and not(i2))

t t f f t f t

t f f t f t f

f t t f t f t

f f t t t f t

12

Basics of Propositional Logic Informatics 1 25.09.2006

If you compare the columns of truth values for not(i1) or i2 and not(i1 and not(i2))
these are identical so the two expressions (and the circuits they represent) give
identical behaviour. Therefore, as far as their logic is concerned, each is as good
as the other. There may, however, be good engineering reasons for preferring
one over the other: compactness; types of logic gate used; etc. Things that are
logically eqivalent need not physically be the same.

2.3.2 Solving Problem 3: Attaining Common Knowledge

Problem 3 might seem fanciful but it demonstrates a critical problem for large,
distributed systems (like the Internet): how do groups of information processors
achieve common knowledge?

Let’s use the letters “a”, “b” and “c” to identify each of the potentially unfaithful
husbands, so the proposition a means that husband “a” is unfaithful and not(a)
means that “a” is faithful. We can then build the truth table shown below for all
the possible situations that could apply for all truth values for a, b and c.

a b c

a and

b and

c

a and

b and

not(c)

a and

not(b) and

c

a and

not(b) and

not(c)

not(a) and

b and

c

not(a) and

b and

not(c)

not(a) and

not(b) and

c

not(a) and

not(b) and

not(c)

t t t t f f f f f f f

t t f f t f f f f f f

t f t f f t f f f f f

t f f f f f t f f f f

f t t f f f f t f f f

f t f f f f f f t f f

f f t f f f f f f t f

f f f f f f f f f f t

Now let’s consider what the women know at each stage. When they first get
together each woman knows that some husband is unfaithful, so this excludes
the last row of our truth table (where a, b and c are false). The next day no
husbands have been shot and this allows each woman to exclude the rows of the
truth table in which only one husband is unfaithful, since if this were the case
his guilt would have been revealed to the woman concerned (who would know
that the others were faithful and thus identified her own husband as unfaithful).
On the second day there still has been no shooting so each woman can exclude
the rows of the truth table in which exactly two husbands are unfaithful, since
if this had been the case (knowing from the previous day that more than one
husband is unfaithful) the woman concerned would have had to see that only
one of the other husbands was unfaithful and thus identify her own husband as
unfaithful. This leaves us with only one row in the truth table, in which a, b and
c are true and, sure enough, all of the husbands are shot on the third day.

So it took three cycles to attain shared common knowledge in this simple
information system. Now imagine that instead of women we have computer pro-
cesses in their millions distributed across the world and these need to attain
common knowledge. Do you believe this is possible? Most people that I know

13

Basics of Propositional Logic Informatics 1 25.09.2006

believe, in an absolute sense, it is impossible yet a large amount of common
knowledge is shared. How does that work?1

1You need to attend the lectures to find out.

14

Chapter 3

Proof With More Complex
Expressions: Sequent Calculus

The truth tables of Chapter 2 are effective where it is practical to enumerate all
the combinations of truth values for our logical expressions but they are cum-
bersome for complex problems. An alternative (and more common) method is to
view proof as the application of trusted proof rules to a set of axioms (describing
the problem) in order to satisfy some goal expression. This chapter introduces
you to an example of this form of proof.

3.1 Motivating Problems

Problem 4 A common operation in database systems is to construct a new table
of data by joining two existing tables but choosing only those combined rows that

satisfy given constraints. Suppose, for example, that we have the following two

tables of data:

lecturer

name sex age

dave male 42

mary female 21

phil male 64

employee

name ID

dave 2345

ken 9324

mary 6782

phil 7934

We now want to construct a joined table containing (joined) the rows of the

original tables only for those rows in which the lecturer and employee names are

the same and for which the age of the lecturer is less than 50. Define this in such

15

Sequent Calculus Informatics 1 25.09.2006

a way that the specification of the join would work for any size of tables in the

given form.

Problem 5 In the English languagewe can differentiate grammatically well formed
from grammatically ill formed sentences. A context free grammar describes per-

mitted sequences of words by showing how these are composed from permitted

sub-sequences of words. Each of these permitted compositions is described by a

grammar rule. For example:

sentence ⇒ nounphrase, verbphrase

nounphrase ⇒ noun | determiner, noun

verbphrase ⇒ verb | verb, nounphrase

is a collection of three grammar rules. The first says that the sequence of words in

any English sentence must be composed from a nounphrase sequence followed by

a verbphrase sequence. The second rule says that a nounphrase sequence must

be composed from a noun or from a determiner followed by a noun. The third rule

says that a verbphrase must be composed from a verb or a verb followed by a

nounphrase. How would we define grammars like the one above as theories in

logic that we could use to generate grammatically valid sequences of words or test

any sequence of words for conformance to the given grammar?

3.2 Proofs From Assumptions

The proof method used in this chapter is a basic sequent calculus. A proof rule
provides a strategy for establishing the truth of an expression, given the truth of
other expressions. For example, we know that A and B is true given some set of
assumptions, S, if we can prove that A is true, given S and that B is true, given
S. We write the sequent S ⊢ C to denote that the expression, C, can be proved
from the list of assumptions, S. If S is empty, then C is a theorem (i.e. its truth
depends on no assumptions).

Some examples of valid sequents, some of which are expressed as theorems,
are shown in Figure 3.1. Some of these will be referred to in later sections –
particularly when discussing conversion to normal forms in Section 5.2.

The proof rules which we shall use in this section are shown in the table
in Figure 4.1. Each row of this table corresponds to a particular proof rule,
consisting of: a name, for easy reference; a sequent for which the rule provides
proof; and the supporting proofs which are necessary in order to establish the
truth of this sequent. Below, we restate each of the proof rules in English.

• immediate: provides a proof of an expression A from some assumptions if
A is one of the assumptions.

16

Sequent Calculus Informatics 1 25.09.2006

Commutativity of ‘and’ [] ⊢ (A and B)↔ (B and A)
Associativity of ‘and’ [] ⊢ (A and (B and C))↔ ((A and B) and C)
Transitivity of ‘→’ [(A→ B) and (B → C)] ⊢ A→ C

Equivalence →, or [] ⊢ (P → Q)↔ (not(P) or Q)
Equivalence and, or [] ⊢ not(P and Q)↔ (not(P) or not(Q))
Equivalence or, and [] ⊢ not(P or Q)↔ (not(P) and not(Q))
Equivalence ↔, → [] ⊢ (P ↔ Q)↔ (P → Q) and (Q→ P)
Distribution of or over and [] ⊢ (P or (Q and R))↔ ((P or Q) and (P or R))

Figure 3.1: Some useful sequents

• and intro: states that we can know A and B, given some assumptions if we
can prove A from those assumptions and also prove B from those assump-
tions.

• and elim: allows us to prove an expression, C, from some assumptions if
we can find a conjunction, A and B, among those assumptions and obtain a
proof of C from the assumptions with the addition of A and of B.

• or intro left: gives a proof of an expression, A or B, from some assumptions
if A can be proved from those assumptions.

• or intro right: gives a proof of an expression, A or B, from some assump-
tions if B can be proved from those assumptions.

• or elim: allows us to prove an expression, C, from some assumptions if we
can find a disjunction, A or B, among those assumptions and obtain a proof
of C from the assumptions with the addition of A, and then obtain a proof
of C from the assumptions with the addition of B.

• imp intro: states that we can know A → B, given some assumptions if we
can prove B from those assumptions with A added.

• imp elim: allows us to prove an expression, C, from some assumptions F

if we can find an implication, A → B, among those assumptions. We then
obtain a proof of A from the assumptions F ; then find a proof of C from the
assumptions with B added.

To understand how the rules of Figure 3.2 can be used, consider the following
example. The proof is of the sequent: [b → c] ⊢ (a or b) → (a or c). Intuitively, this
seems valid because if c follows from b then if some other proposition, a, is true
then (a or c) is true; on the other hand if b is true then c is true and so (a or c)
is true. To prove this formally it is first necessary to apply the imp intro rule to
insert (a or b) among the set of assumptions. We then apply the or elim rule which
allows us to prove (a or c) given the presence of (a or b) in the set of assumptions
and independent proofs of (a or c) from a and from b.

The full proof is shown, using a tree diagram, in Figure 3.3. At the top of the
diagram is shown the initial sequent. The branches below it show the application

17

Sequent Calculus Informatics 1 25.09.2006

Rule name Sequent Supporting proofs

immediate F ⊢ A A ∈ F
and intro F ⊢ A and B F ⊢ A, F ⊢ B

or intro left F ⊢ A or B F ⊢ A

or intro right F ⊢ A or B F ⊢ B

or elim F ⊢ C A or B ∈ F , [A|F] ⊢ C, [B|F] ⊢ C

imp elim F ⊢ B A→ B ∈ F , F ⊢ A

imp intro F ⊢ A→ B [A|F] ⊢ B

Where: F is some list of assumptions.
A and B are well formed expressions.
X ∈ Y denotes that X is an element of set Y .

Figure 3.2: A set of proof rules without negation

of the proof rules. This form of tree is called an “and tree” because if there is a
set of branches [B1, B2, · · · , BN] arising from a given sequent then it is necessary
to satisfy B1 and B2 and · · · and BN . Using this diagram, one can reconstruct
the temporal sequence of steps taken to perform the proof by starting at the top;
moving downwards; and always exploring left hand branches before those to the
right. This form of search is known as depth–first, left–to–right search because
all branches are explored out to their tips, starting with those farthest to the left.

It often is useful to have some strategy for choosing which rule to apply at any
given stage in a proof. One of the many strategies is given in Figure 3.4.

Let us now consider how the search strategy of Figure 3.4 is applied to a par-
ticular problem. Suppose that we want to establish the sequent:
[a← b, a← (d or e), e← (f and g), f, g] ⊢ a

The sequence in which our strategy would search for a proof is shown in Fig-
ure 3.5, where the sequence of application of rules is from top to bottom of the
page and indentation indicates which proofs are sub–proofs of others.

3.3 Solving The Problems of Section 3.1

3.3.1 Solving Problem 4: Joining Relational Data

First let’s represent the two tables of data as follows:

lecturer(dave, male, 42)
lecturer(mary, female, 21)
lecturer(phil, male, 64)

18

Sequent Calculus Informatics 1 25.09.2006

?

?

?

?

?

?

?

?

?

?

[b→ c] ⊢ (a or b)→ (a or c)

[a or b, b→ c] ⊢ a or c

(a or b) ∈ [a or b, b→ c]

[a, a or b, b→ c] ⊢ a or c

[a, a or b, b→ c] ⊢ a

a ∈ [a, a or b, b→ c]

[b, a or b, b→ c] ⊢ a or c

[b, a or b, b→ c] ⊢ c

(b→ c) ∈ [b, a or b, b→ c]

[b, a or b, b→ c] ⊢ b

b ∈ [b, a or b, b→ c]

imp intro

or elim

or intro left

immediate

or intro right

imp elim

immediate

Figure 3.3: Proof tree for [b→ c] ⊢ (a or b)→ (a or c)

19

Sequent Calculus Informatics 1 25.09.2006

Given some sequent to be proved, of the form F ⊢ P :

• If P follows directly from the immediate rule then it is proved.

• If P is of the form A and B then use and intro.

• If P is of the form A or B then first try to prove it using
or intro left but, if that fails or you need another proof, then try using
or intro right.

• If P is of the form A→ B then use imp intro.

• Otherwise, apply the imp elim rule with the first member of F which is
of form P ← C1. If no proof can be found using this implication state-
ment then take the next statement, P ← C2, and apply the implication

rule again. Repeat this procedure until either a proof is found or all
the implication statements have been used.

Figure 3.4: Example proof strategy using rules of Figure 3.2

Problem : [a← b, a← d or e, e← f and g, f, g] ⊢ a

Agree to represent the set of assumptions using the symbol F

Goal: F ⊢ a

Apply implication given a← b ∈ F
New subgoal: F ⊢ b

No proof rule can be applied to this goal.
So re–apply implication given a← d or e ∈ F
New subgoal: F ⊢ d or e

Apply or intro left

New subgoal: F ⊢ d

No proof rule can be applied to this goal.
So apply or intro right

New subgoal: F ⊢ e

Apply implication given e← f and g ∈ F
New subgoal: F ⊢ f and g

Apply and intro

First new subgoal: F ⊢ f

Apply immediate given f ∈ F
Second new subgoal: F ⊢ g

Apply immediate given g ∈ F

Figure 3.5: A proof using the strategy of Figure 3.4

20

Sequent Calculus Informatics 1 25.09.2006

employee(dave, 2345)
employee(ken, 9324)
employee(mary, 6782)
employee(phil, 7934)

We can also define axioms describing the type of data value for each column
of our two data tables:

lecturer(N, S, A) → name(N) and sex(S) and age(A)
employee(N, I) → name(N) and id(I)

We no define the predicate new(N1, S, A, N2, I) which is true when lecturer(N1, S, A)
and employee(N2, I) are true and when N1 = N2 and A < 50 (the join condition).

lecturer(N1, S, A) and employee(N2, I) and N1 = N2 and A < 50 → new(N1, S, A, N2, I)

The new data table is then the set of instances satisfying:

∃N1, S, A, N2, I.new(N1, S, A, N2, I)

which is:
lecturer(dave, male, 42, dave, 2345)
lecturer(mary, female, 21, mary, 6782)

This simply constructed data set is not ideal - for one thing it contains du-
plicate entries for names. In the data component of Informatics 1 you will learn
about more sophisticated operations on databases.

3.3.2 Solving Problem 5: Grammars as Logic

Let’s consider sentence generation first. In another part of Informatics 1 you
are learning about functional programming so one way to approach this problem
is to describe a function to generate sentences. Let’s describe this function in
English (though still precisely) as follows, where the name of the function is on
the left of each “=” and its computation (in terms of word sequences and other
functions) is on the right. Concatenation is a function that joins two sequences
in order.

sentence = concatenation of nounphrase with verbphrase
nounphrase = noun or concatenation of determiner with noun
verbphrase = verb or concatenation of verb with nounphrase

These correspond directly to the three grammar rules of Problem 5. In order to
generate valid sequences of words, however, we need also to supply the functions
giving us the appropriate noun, verb and determiner sequences.

21

Sequent Calculus Informatics 1 25.09.2006

noun = [dave] or [dust]
verb = [bites]

determiner = [the]

Applying the sentence function will now generate for us grammatically valid
sequences like [dave,bites,the,dust]1.

We want to do this in predicate logic so the model of inference is different but
we can still follow the same pattern of design. The basic difference is that instead
of composing functions to generate valid sequences we will define predicates with
a single argument for the “output” sequence and define the conditions for sat-
isfiability of these sequences analogously to the computations of our functions.
The logic versions of our grammar rules then are as shown below:

nounphrase(S1) and verbphrase(S2) and concatenate(S1, S2, S) → sentence(S1)
noun(S) or (determiner(S1) and noun(S2) and concatenate(S1, S2, S)) → nounphrase(S)
verb(S) or (verb(S1) and nounphrase(S2) and concatenate(S1, S2, S)) → verbphrase(S)

Where concatenate(S1, S2, S) is true if sequence S1 joined to sequence S2 in
order is sequence S. Now we also need the specific noun, verb and determiner
sequences as before:

noun([dave])
noun([dust])
verb([bites])
determiner([the])

We now can use our logical grammar to generate sentences (as we could with
our functional definition). For example, if we attempt to satisfy:

∃X.sentence(X)

then this is true for instances ofX such as [dave,bites,the,dust] and [dave,bites,dust].
Unlike our functional definition, however, we can also test given sentences for
their grammatical correctness (that is, we can parse as well as generate sen-
tences) so we could satisfy goals such as:

sentence([dave, bites, the, dust])

This might seems strange given the functional description with which we
started, since parsing a sentence would be like computing our functions “back-
wards” from a given output. Predicates, however, do not necessarily differentiate
input from output - they only relate arguments - so in this case we can use the
same logical axioms for both generation and parsing.

1It also generates grammatically valid but implausible sentences like [dust,bites,the,dave] -
avoiding those is a deeper issue

22

Chapter 4

Negation and Contradiction

This chapter extends the range of proofs we can perform to those involving proofs
by contradiction and “proofs” in which negations of expressions are assumed
when a proof fails.

4.1 Motivating Problems

Problem 6 An artificial neural network is a system composed of a large, intercon-
nected set of simple processing units. The neural network is trained by supplying

it with stimuli and reinforcing responses that are appropriate and/or suppressing

those which are inappropriate. In this way networks may learn to exhibit cer-

tain kinds of behaviours. A classic sort of processing unit in such networks is the

perceptron, described in the diagram below:

Threshold

I1

In
O

W1

Wn

which shows a perceptron with a set of inputs {I1, . . . , In}; a threshold input;
and an output, O. Inputs always have a value of 0 or 1. The output is calculated
by the equation:

O = Th(W1 ∗ I1 + . . . + Wn ∗ In− Threshold)
where : Th(E) = 0 if E ≤ 0

Th(E) = 1 if E > 0

To what extent would it be possible to train a perceptron to reason logically?

Could we train it to give the logically correct evaluation of A and B for all truth

23

Negation and Contradiction Informatics 1 25.09.2006

values of A and B for example? What about more complex expressions such as

“exclusive or” ((A or B) and not(A and B))?

4.2 A Proof System Including Negation

To allow us to reason with negative information we extend the rules from Fig-
ure 3.2 with the following additional rules:

• contradiction: says that any expression C can be proved from some as-
sumptions if we can prove that the assumptions are inconsistent (i.e. if we
can prove false from them).

• neg intro: provides a proof of not(A) from some assumptions if we can prove
false from those assumptions with the addition of A.

• neg elim: says that any expression C can be proved from some assumptions
if not(A) appears in those assumptions and we can also prove A from those
assumptions. Since the ability to deduce both not(A) and A indicates that
the assumptions are inconsistent, this is similar to the contradiction rule.

• double neg: provides a proof of an expression A from some assumptions if
those assumptions yield a proof of not(not(A)) (i.e. that the negation of A is
false).

The full set of rules is given in Figure 4.1.

An example of a proof by contradiction, using the rules from Figure 4.1, is
shown in Figure 4.2. We want to prove the sequent: [a, not(a and b)] ⊢ not(b) and
do this by adding b to the set of assumptions and proving that this is inconsistent
(using the neg intro rule). Therefore, since the expression, a, is inconsistent,
not(a) must be true.

4.3 The Closed World Assumption

The proof rules of Figure 4.1 allow us to perform proofs with negative informa-
tion. These proofs are conservative in the sense that they allow us to conclude
that a proposition is false only if it can be proved to be false. An alternative, often
simpler, method is to accept that a proposition is false if it cannot be proved to
be true. If we follow this route we may simplify our proof rules to those given in
Figure 4.3. Here we have only one rule (cw neg) to establish that a proposition is
false and it succeeds if all attempts to prove the proposition fail. The integrity
of this rule relies on the assumption that we have included in our axiomatisa-
tion of the problem all of the information relevant to the proposition - we have

24

Negation and Contradiction Informatics 1 25.09.2006

Rule name Sequent Supporting proofs

equiv elim F ⊢ A↔ B F ⊢ A→ B, F ⊢ B → A

and intro F ⊢ A and B F ⊢ A, F ⊢ B

and elim F ⊢ C A and B ∈ F , [A, B|F] ⊢ C

or intro left F ⊢ A or B F ⊢ A

or intro right F ⊢ A or B F ⊢ B

or elim F ⊢ C A or B ∈ F , [A|F] ⊢ C, [B|F] ⊢ C

imp intro F ⊢ A→ B [A|F] ⊢ B

imp elim F ⊢ B A→ B ∈ F , F ⊢ A

contradiction F ⊢ C F ⊢ false

neg intro F ⊢ not(A) [A|F] ⊢ false

neg elim F ⊢ C not(A) ∈ F , F ⊢ A

double neg F ⊢ A F ⊢ not(not(A))
immediate F ⊢ A A ∈ F

Where: F is some list of assumptions.
A, B and C are well formed expressions.
X ∈ Y denotes that X is an element of set Y .
[X|Y] is a list with first element X and remaining

elements Y .

Figure 4.1: Proof rules of Figure 3.2 extended with negation

25

Negation and Contradiction Informatics 1 25.09.2006

?

?

?

?

?

?

?

[a, not(a and b)] ⊢ not(b)

[b, a, not(a and b)] ⊢ false

not(a and b) ∈ [b, a, not(a and b)]

[b, a, not(a and b)] ⊢ a and b

[b, a, not(a and b)] ⊢ a

a ∈ [b, a, not(a and b)]

[b, a, not(a and b)] ⊢ b

b ∈ [b, a, not(a and b)]

neg intro

neg elim

and intro

immediate

immediate

Figure 4.2: Proof tree for [a, not(a and b)] ⊢ not(b)

26

Negation and Contradiction Informatics 1 25.09.2006

Rule name Sequent Supporting proofs

immediate F ⊢ A A ∈ F
and intro F ⊢ A and B F ⊢ A, F ⊢ B

or intro left F ⊢ A or B F ⊢ A

or intro right F ⊢ A or B F ⊢ B

or elim F ⊢ C A or B ∈ F , [A|F] ⊢ C, [B|F] ⊢ C

imp elim F ⊢ B A→ B ∈ F , F ⊢ A

imp intro F ⊢ A→ B [A|F] ⊢ B

cw neg F ⊢ not(A) F 6 ⊢ A

Where: F is some list of assumptions.
A and B are well formed expressions.
X ∈ Y denotes that X is an element of set Y .

Figure 4.3: A set of proof rules with closed world negation

described all we need to know about “the world”, hence the term “closed world
assumption”.

Often it is effective to make the closed world assumption and many practical
inference systems rely on it. It must, however, be handled with care. Suppose,
for example, that we have the sequent [p(a), q(b)] ⊢ p(X) and not(q(X)). First we
try to prove p(X) and this is satisfied with p(a) so we then satisfy not(q(a)) using
the cw neg rule. But suppose we chose to prove not(q(X)) first. This would fail
(since q(b) is provable) so in this case our sequent would be judged false. There
are ways around such problems but we won’t discuss these here.

4.4 Solving The Problems of Section 4.1

4.4.1 Solving Problem 6: Limits of Perceptrons

First let’s define the behaviour of a perceptron using the equation supplied in
Problem 6:

sum weights(In, S) and E = S−T and

(E ≤ 0 and Out = 0)
or

(E > 0 and Out = 1)

 → perceptron(In, T, Out)

(4.1)

where sum weights(In, S) sums the weighted inputs in the In set.

Let’s now assume that we have defined a representative set of weights and
thresholds. For example:

27

Negation and Contradiction Informatics 1 25.09.2006

weight(−2) threshold(−2)
weight(−1.9) threshold(−1.9)

...
...

weight(1.9) threshold(1.9)
weight(2) threshold(2)

(4.2)

We also can define the permitted values for any input:

input(0) input(1) (4.3)

Next we define what it means for the behaviour of a perceptron to be valid. We
write valid perceptron(Type, W1, W2, T) whenever a 2-input perceptron of a given
type, P , gives a valid behaviour with the inputs’ weights set to W1 and W2 and
its threshold set to T . This is true if the weights and threshold are such that
there is no combination of inputs for which the perceptron’s behaviour does not
give the correct answer for that type of behaviour.

weight(W1) and weight(W2) and

threshold(T) and

not

input(I1) and input(I2) and

perceptron([(I1, W1), (I2, W2)], T, O) and

not(required(P, [(I1, W1), (I2, W2)], O))

→ valid perceptron(P, W1, W2, T)

(4.4)

The last step is to define the required behaviours. These are as follows:

required(and, [(1, W1), (1, W2)], 1)
required(and, [(1, W1), (0, W2)], 0)
required(and, [(0, W1), (1, W2)], 0)
required(and, [(0, W1), (0, W2)], 0)

(4.5)

required(or, [(1, W1), (1, W2)], 1)
required(or, [(1, W1), (0, W2)], 1)
required(or, [(0, W1), (1, W2)], 1)
required(or, [(0, W1), (0, W2)], 0)

(4.6)

required(exor, [(1, W1), (1, W2)], 0)
required(exor, [(1, W1), (0, W2)], 1)
required(exor, [(0, W1), (1, W2)], 1)
required(exor, [(0, W1), (0, W2)], 0)

(4.7)

This completes the definition of all the assumptions we wish to make about
the problem. Let’s call this set S and it contains all the expressions from 4.1
to 4.7 above. We obtain answers to the questions posed in Problem 6 by checking
whether or not the following sequents are satisfiable:

28

Negation and Contradiction Informatics 1 25.09.2006

S ⊢ valid perceptron(and, W1, W2, T)

is satisfiable with many combinations of W1, W2 and T . For example there is
a solution with W1 = 0.2, W2 = 0.2 and T = 0.4.

S ⊢ valid perceptron(or, W1, W2, T)

also is satisfiable with many combinations of W1, W2 and T . For example
there is a solution with W1 = 0.3, W2 = 0.3 and T = 0.1.

S ⊢ valid perceptron(exor, W1, W2, T)

is not satisfiable. Does this, by itself, lead you to believe conclusively that
a perceptron cannot represent exclusive or (exor)? Remember that our “proof”
relied on searching for a satisfiable solution using the permitted weights and
thresholds given in expression 4.2. These aren’t all the possible weights and
thresholds - for instance 0.15 isn’t given although 0.1 and 0.2 are. We need,
therefore, a more complete analysis of perceptron behaviour. One simple way to
do this is to visualise the space of responses to input of the different perceptron
types. The diagrams below depict the required response of each of the three
types of perceptron (as defined in logic in expression 4.7 above). Each square
corresponds to a different input combination and the number in a box is the
appropriate output.

1

0

Input 1

Input 2
10

1

0

Input 1

Input 2
10

1

0

1

0

Input 1

Input 2
10

00

0 1 1

1 1

1

0

0

and or exor

Now try to draw a straight line on each diagram that separates all its “0”
squares from all its “1” squares. You can do this for the “and” and “or” diagrams
but not for “exor”. If you study the thesholding equation used in the perceptron
relies on this linear separation.

Notice that what we have done in this example is to describe our problem
in a particular way relying on specific assumptions. We used a from of proof
based on these assumptions to explore the questions we had in mind but the
proofs we had, although revealing, were not enough because we didn’t entirely
trust our assumptions. We then strengthened those assumptions by exploring
the problem in a different style which relied on visual insight and examination of

29

Negation and Contradiction Informatics 1 25.09.2006

the thresholding equation. Combining different styles of formal analysis like this
is common in complex problems. Experts in applied logic have reliable intuitions
about which styles of representation and proof to apply to different problems.

30

Chapter 5

Proofs Using One Proof Rule:
Resolution

In this chapter, we describe a technique for reducing the number of proof rules
to just one: the Resolution rule of inference. In order for this rule to work, it is
necessary also to simplify the expressions which we are dealing with. We first
describe this simplification process and then explain how resolution works.

5.1 Motivating Problems

Problem 7 It would be useful if we could have a very close relationship between
logic and computer programs so that we could (among other things) use logic to

describe precisely what we want a program to do and use proof to verify that it

does those things. However, programmers using conventional programming lan-

guage expect those languages to have a number of features that are not obvious in

traditional logic:

• Programs written in the language determine sequences of tasks performed
by the computer.

• The strategy used to execute programs in the language chooses tasks in a
simple and predictable way that allows programmers to envisage the be-

haviour of the program before running it.

• Programs written in the language can be run efficiently.

• Programs written in the language can interact with other programs (such as
databases and user interfaces).

Could we find a route that takes us from some traditional logic to something that

has the features of a traditional programming language? For example, could we

apply logic to describing the proof strategy that we gave informally in Figure 3.4.

31

Resolution Informatics 1 25.09.2006

5.2 Normal Forms

In making various statements in logic we have made use of a variety of op-
erators – namely not, and, or, → and ↔. We know that all of these opera-
tors are not strictly necessary – for example, the → operator can always be
“rephrased” in terms of the ‘not’ and ‘or’ operators by employing the equivalence:
(P → Q) ↔ (not(P) or Q). By progressively rewriting an expression in this way, it
turns out to be possible to represent any expression using only the ‘and’, ‘or’ and
‘not’ operators. Furthermore, it is possible to further simplify the expression by
breaking it up at each ‘and’ symbol; converting the resulting propositions (which
we shall call literals) into sets; and finally placing these sets themselves into a
set. The result is therefore a set of (implicitly “and”ed) sets of (implicitly “or”ed)
literals. The expression is then said to be in clausal form. The conversion proce-
dure is described in Appendix B below1. To illustrate how this procedure works,
suppose that we have the following expression:

(a and not(b)→ c) and a and not(c)

We can convert this expression into clausal form by applying the sequence
of transformations shown in Figure 5.1. We end up with the final normalised
expression:

[[not(a), b, c], [a], [not(c)]]

which comprises a set of three subsets. These subsets are implicitly conjoined
(i.e. all three sets are must be true). The elements within each subset (where
there is more than one element in a set) are implicitly disjoined – e.g. the first
subset represents the expression not(a) or b or c. This example highlights some
important points:

• The ordering of literals within each subset is unimportant, since they are
all “or”ed together and any one would be sufficient to prove the truth of a
subset.

• The ordering of subsets is unimportant because they are all “and”ed to-
gether and all must be proved to prove the truth of the expression.

• It would not be possible to reconstruct the original expression, with all the
logical operators back in place, just by looking at its clausal form. The same
clausal form could have been produced from many different combinations
of logical operators.

• The clausal form is quite difficult for a human to read. By imposing unifor-
mity on our representation we have sacrificed some of its intelligibility.

1The full conversion procedure is slightly more complex. We have simplified it in order to bring
out the important features

32

Resolution Informatics 1 25.09.2006

Initial expression:

(a and not(b)→ c) and a and not(c)
Eliminate ‘→’ operator

not(a and not(b) or c) and a and not(c)
Drive negation in using not(P and Q)↔ (not(P) or not(Q))

(not(a) or not(not(b)) or c) and a and not(c)
Remove double negations using not(not(P))↔ P

(not(a) or b or c) and a and not(c)
Convert to sets

[[not(a), b, c], [a], [not(c)]]

Figure 5.1: A conversion to clausal form

5.3 Resolution

Resolution provides us with a simple way of establishing the truth of an expres-
sion in clausal form, given a set of assumptions also in clausal form. It relies
upon a single proof rule, called the resolution rule of inference. A definition of
this rule appears below.

The resolution rule of inference, permits the following procedure:

• If we have two sets of literals, R and S which are implicit disjunctions in
clausal form.

• and if we can extract from R an element, P , leaving the remaining elements
R′.

• and if we can extract from S an element, not(Q), leaving the remaining ele-
ments S ′.

• and if Q matches with P .

• then we can derive the new clause obtained by merging R′ and S ′.

As an illustration, consider the clauses [not(a), b, c] and [not(c)] from our run-
ning example. Applying the resolution rule to these two clauses allows us to
“cancel out” c and not(c) (in the process, substituting dave for X), leaving us with
a clause consisting of the remaining elements from both sets – namely: [not(a), b].
Proving the truth of an expression by resolution employs a technique similar
to the “proof by absurdity” approach described in Section 4. A (simplified) re-
statement of this rule is that the conjunction P and not(P) is inconsistent. If
we convert this into clausal form then we can say that [[P], [not(P)]] is inconsis-
tent. Furthermore, we know that the resolution rule allows us to resolve [P] with
[not(P)] to obtain the empty clause, []. Therefore, if we can resolve any of the sets
in our set of clauses to obtain the empty clause we have proved that our clauses
are inconsistent. This allows us to prove the truth of a clause, given some set

33

Resolution Informatics 1 25.09.2006

of assumptions, by negating it; proving that the negated clause, when combined
with the set of assumptions, is inconsistent by resolving until an empty clause is
obtained; and thus concluding that since the negation of the clause is inconsis-
tent (and therefore false) the original, non–negated clause must follow from the
truth of the set of assumptions.

An expression, F , in clausal form is true, given a set, A, of assumptions in
clausal form if its negation, F ′, can be proved inconsistent with A by resolution.
F ′ is inconsistent with A when an empty set of literals can be found by some
sequence of applications of the resolution rule to the set formed by adding F ′ to
A.

Figure 5.2 gives an example of a resolution proof applied to our running ex-
ample. We set out to prove the proposition b. To do this we negate b; add it to the
set of assumptions; obtain an empty clause using resolution – thus establishing
that negating b causes a contradiction; and so conclude that b is true.

5.4 Solving The Problems of Section 5.1

5.4.1 Solving Problem 7: Logic Programs

Resolution eliminates the need to choose proof rules but this does not, of itself,
make proof less complex or closer to traditional computation. We can, however,
further simplify the way we write expressions. Recall that each expression in
clausal form is a disjunctive set of propositions, so the set [not(a), not(b), c] is
equivalent to the expression not(a) or not(b) or c. Suppose that we restrict our
attention to those expressions containing at most one non-negated proposition.
We can convert these into implications with as single proposition as a conclusion
by the following translation:

• Apply the equivalence (not(X) or not(Y)) ↔ not(X and Y) to all the negated
propositions in the clause. For example not(a) or not(b) or c translates to
not(a and b) or c.

• Apply the equivalence (not(X) or Y) ↔ (X → Y) to introduce an implica-
tion. For example, not(a and b) or c translates to (a and b) → c

Let’s now write down the proof strategy of Figure 3.4 using clauses in this
form. The trick is to invent a predicate that we shall call satisfy(X) that is
true when a theorem X is satisfiable using the proof rules of Figure 3.2 and
the strategy of Figure 3.4. We then define a clause for this predicate for each
case of the strategy, using the appropriate supporting proofs from Figure 3.2 as
preconditions to the corresponding strategy clause. The resulting set of clauses
is:

34

Resolution Informatics 1 25.09.2006

Given assumptions:

[[not(a), b, c], [a], [not(c)]]

To prove that b is true:
First, negate the goal to form the clause [not(b)].
Then add the negation to the set of assumptions to form the
following set of clauses (numbered for subsequent reference):

1. [not(b)] (the negation of our goal)

2. [not(a), b, c]

3. [a]

4. [not(c)]

Now apply the resolution rule until an empty set is obtained.

(1) [not(b)] (2) [not(a), b, c]

@
@

@R

�
�

�	
[not(a), c] (3) [a]

@
@

@R

�
�

�	
[c] (4) [not(c)]

@
@

@R

�
�

�	
[]

We have now established that not(b) is inconsistent with our
original assumptions so we conclude that b is true.

Figure 5.2: An example of resolution

35

Resolution Informatics 1 25.09.2006

A ∈ F → satisfy(F ⊢ A)
satisfy(F ⊢ A) and satisfy(F ⊢ B) → satisfy(F ⊢ A and B)

satisfy(F ⊢ A) → satisfy(F ⊢ A or B)
satisfy(F ⊢ B) → satisfy(F ⊢ A or B)

satisfy({A} ∪ F ⊢ B) → satisfy(F ⊢ A → B)
A→ B ∈ F and satisfy(F ⊢ A) → satisfy(F ⊢ B)

There is a simple way of using these clauses to apply the strategy they de-
scribe:

• Given some goal, find a clause with a conclusion that matches it (back-
tracking to choose another if this one doesn’t yield a solution).

• If the clause has no precondition then the goal is true.

• If the clause has a precondition then take each of its constituent proposi-
tions and apply the strategy to it.

This strategy resembles the sort of problem decomposition done by program-
ming languages. In fact it is essentially the strategy (and representation) used in
the Prolog programming language.

36

Chapter 6

Proofs and State Change: Modal
Logic

In Chapter 1 we explained how varieties of logic develop to tackle particular forms
of representation and inference. We now give a basic example of one of these: a
modal logic dealing with state change over time.

6.1 Motivating Problems

Problem 8 The following is a communication protocol for a simple bank transac-
tion system. There are three types of agents in this system: customers, branches

and banks. The behaviour of each type, T , is constrained by the definition a(T, X) ::
DwhereX is an identifier for a specific agent of type T andD defines its behaviour.

Behaviours are defined using message passing. M ⇒ A means that message M

is sent to agent A. M ⇐ A means that message M is received from agent A.

When an agent must perform two behaviours, B1 and B2, in sequence we write
B1 then B2. When an agent can choose between two behaviours, B1 and B2, we
write B1 or B2.

a(customer, C) :: buy ⇒ a(branch, B) then

sell ⇐ a(branch, B) then

a(customer, C)

a(branch, B) :: buy ⇐ a(customer, C) then

check funds(C) ⇒ a(bank, X) then

has funds(C) ⇐ a(bank, X) then

sell ⇒ a(customer, C) then

reconcile(C) ⇒ a(bank, X) then

a(branch, B)

37

Modal Logic Informatics 1 25.09.2006

a(bank, X) :: ((check funds(C) ⇐ a(branch, B) then

has funds(C) ⇒ a(branch, B)) or

reconcile(C) ⇐ a(branch, B)) then

a(bank, X)

Is this a good protocol from the banks point of view? Can you see any flaws in

it?

6.2 A Basic Temporal Logic

Many varieties of temporal logic exist. The one chosen here has a style similar
to the sequent based systems you saw earlier and it also operates directly on
sequences of states. The proof rules for the logic are in Figure 6.1. These are
similar in style to the other proof rules you have seen, except for the way in which
the assumptions are given. Instead of a set of assumptions we base our proofs of
a sequence of states, S and an integer index, J, that identifies the current state.
If J = 0 it refers to the first state; if J = 1 it refers to the second state, and so on.

This allows us to talk about the truth of propositions relative to specific states,
since (S, J) ⊢ A means that A is true at state J of sequence S. Once we can
identify specific points then we can also make use of the temporal ordering of
the sequence to talk about the truth of propositions forward or backward from
a given point. (S, J) ⊢ next(A) means that A is true in the state immediately
following state J. (S, J) ⊢ e future(A)means that A is true in some state following
state J. (S, J) ⊢ a future(A) means that A is true in all states following state J.
We can reference past states similarly.

6.3 Solving The Problems of Section 6.1

6.3.1 Solving Problem 8: Protocol Verification

Suppose that we have a means of generating from the protocol of Problem 8
sequences of messages permitted by the protocol. An example of one such se-
quence (where c1 is a customer; b1 is a branch and x1 is a bank) is:

38

Modal Logic Informatics 1 25.09.2006

Rule name Sequent Supporting proofs

(S, J) ⊢ A access(J,S,F), F ⊢ A

(S, J) ⊢ not(A) (S, J) 6 ⊢ A

(S, J) ⊢ A and B (S, J) ⊢ A, (S, J) ⊢ B

(S, J) ⊢ A or B (S, J) ⊢ A

(S, J) ⊢ A or B (S, J) ⊢ B

(S, J) ⊢ next(A) (S, J + 1) ⊢ A

(S, J) ⊢ prev(A) J > 0, (S, J − 1) ⊢ A

(S, J) ⊢ e future(A) (S, K) ⊢ A for some K > J

(S, J) ⊢ e past(A) (S, K) ⊢ A for some K < J

(S, J) ⊢ a future(A) (S, K) ⊢ A for all K > J

(S, J) ⊢ a past(A) (S, K) ⊢ A for some K < J

Where: S is a set of states.
Where: F is a state (an element of S).

A and B are well formed expressions.
access(J,S,F) extracts the Jth state from S.

Figure 6.1: A set of temporal proof rules

message(a(customer, c1), buy ⇒ a(branch, b1))
message(a(branch, b1), buy ⇐ a(customer, c1))
message(a(branch, b1), check funds(c1) ⇒ a(bank, x1))
message(a(bank, x1), check funds(c1) ⇐ a(branch, b1))
message(a(bank, x1), has funds(c1) ⇒ a(branch, b1))
message(a(branch, b1), has funds(c1) ⇐ a(bank, x1))
message(a(branch, b1), sell ⇒ a(customer, c1))
message(a(customer, c1), sell ⇐ a(branch, b1))
message(a(branch, b1), reconcile(c1) ⇒ a(bank, x1))

We could view message sequences as sequences of states, where each state
corresponds to the sending of a message. Then we could use our temporal logic
from Section 6.2 to test if given pathological properties hold of any possible state
sequence. For example, one thing the bank might want to avoid is selling money
to the same customer through two different branches before those branches
had reconciled the transactions with the bank. This property expressed in our
temporal logic (where b1 and b2 are two different branches) is:

(S, J) ⊢ message(a(customer, c1), sell <= a(branch, b1)) and

e future(message(a(customer, c1), sell <= a(branch, b2)) and

e future(message(a(branch, b1), reconcile(C) => a(bank, x1)) and

next(message(a(branch, b2), reconcile(C) => a(bank, x1)))))

39

Modal Logic Informatics 1 25.09.2006

There are message sequences satisfying this property that can be generated
from the protocol. One such sequence is:

message(a(customer, c1), buy ⇒ a(branch, b1))
message(a(branch, b1), buy ⇐ a(customer, c1))
message(a(branch, b1), check funds(c1) ⇒ a(bank, x1))
message(a(bank, x1), check funds(c1) ⇐ a(branch, b1))
message(a(bank, x1), has funds(c1) ⇒ a(branch, b1))
message(a(branch, b1), has funds(c1) ⇐ a(bank, x1))
message(a(branch, b1), sell ⇒ a(customer, c1))
message(a(customer, c1), sell ⇐ a(branch, b1))
message(a(customer, c1), buy ⇒ a(branch, b2))
message(a(branch, b2), buy ⇐ a(customer, c1))
message(a(branch, b2), check funds(c1) ⇒ a(bank, x1))
message(a(bank, x1), check funds(c1) ⇐ a(branch, b2))
message(a(bank, x1), has funds(c1) ⇒ a(branch, b2))
message(a(branch, b2), has funds(c1) ⇐ a(bank, x1))
message(a(branch, b2), sell ⇒ a(customer, c1))
message(a(customer, c1), sell ⇐ a(branch, b2))
message(a(branch, b1), reconcile(c1) ⇒ a(bank, x1))
message(a(branch, b2), reconcile(c1) ⇒ a(bank, x1))

Probably you found it difficult to guess simply by reading the protocol that
it contains this potential flaw. Even if you guessed, it would have taken you a
lot of effort to produce precisely an example of the problem. Normally protocols
are more complex so this sort of task is daunting without mechanical systems to
check them quickly.

40

Appendix A

Notation: Well Formed Expressions

The definition used in this course for a well formed expression in First Order
Predicate Logic is given below.

Definition 1 Awell formed expression in the First Order Predicate Logic is defined
as follows:

1. A constant can be any number or any unbroken sequence of symbols begin-

ning with a lower–case letter.

2. A variable is any unbroken sequence of symbols beginning with an upper

case letter.

3. A predicate is a term consisting of a functor, the predicate name, and an

ordered set of 0 or more arguments. Predicates with 1 or more arguments

are written in the style: F (A1, · · · , AN), where F is the functor and N is the

number of arguments (or arity) of the predicate.

4. Predicate names must be constants.

5. Arguments may be either constants or variables. Variables may be quantified

using either Universal or Existential Quantifiers, i.e. ∀ or ∃, respectively.

6. If P and Q are expressions, then the following are also expressions:

• not P

• not Q

• P and Q

• P or Q

• P → Q

• P ↔ Q

7. If P is a well formed term then ∀X P and ∃X P are terms quantified over

X. Any variables not quantified using either ∀ or ∃ are referred to as free
variables in P .

41

Modal Logic Informatics 1 25.09.2006

42

Appendix B

Conversion to Clausal Form

The algorithm for conversion of a FOPL expression to clausal form is as follows:

• Eliminate any ↔ and → operators by rewriting it using the following equiv-
alences (where the expression on the left side of the ‘↔’ can be rewritten as
the statement on the right side):

– (P ↔ Q)↔ ((P → Q) and (Q→ P))

– (P → Q)↔ (not(P) or Q)

• Convert to prenex form by moving all quantifiers to the left hand side of
the expression, using the following equivalences (where X is a quantified
variable and A and B are sub–expressions in the expression):

– not(∀X A)↔ (∃X not(A))

– not(∃X A)↔ (∀X not(A))

– ((∀X A) and B)↔ (∀X A and B)

– ((∃X A) and B)↔ (∃X A and B)

– (A and (∀X A))↔ (∀X A and B)

– (A and (∃X A))↔ (∃X A and B)

– ((∀X A) or B)↔ (∀X A or B)

– ((∃X A) or B)↔ (∃X A or B)

– (A or (∀X A))↔ (∀X A or B)

– (A or (∃X A))↔ (∃X A or B)

• Eliminate all existential quantifiers as follows:

– Those outside the scope of any universal quantifier are replaced with
Skolem constants (arbitrary names which don’t appear anywhere else).
For example, the expression: ∃X happy(X) might be converted into
happy(someone), where ‘someone’ is a Skolem constant representing some
arbitrarily selected person.

43

Clausal Form Informatics 1 25.09.2006

– Those inside the scope of any universal quantifier are replaced with
Skolem functions, whose arguments are the universally quantified vari-
ables within whose scope the existential occurs. For instance, the ex-
pression: ∀X ∃Y hates(X, Y)might be converted into hates(X, enemy of(X))
where enemy of(X) is a Skolem function which obtains some enemy for
any X.

• Remove all universal quantifiers, on the understanding that all the variables
are implicitly universally quantified. The expression is now free of quantifier
symbols.

• Drive negation in to the individual predicates, using the equivalences:

– not(P and Q)↔ (not(P) or not(Q))

– not(P or Q)↔ (not(P) and not(Q))

– not(not(P))↔ P

• Distribute disjunction over conjunction, using the equivalence:

– (P or (Q and R))↔ ((P or Q) and (P or R))

The expression is now said to be in conjunctive normal form.

• Convert each group of disjunctions into a set of atomic expressions and
place each of these sets into an implicitly conjoined set of disjunctions.

• Rename all variables so that the same variable name doesn’t appear in
different disjunctive sets.

44

