Probabilistic FSMs

In this lecture we look briefly at probabilistic finite state systems and hidden markov models.

Types of FSMs

- Deterministic: Single path through transition network determined by input symbols.
- Non-deterministic: Multiple paths possible with the same sequence of input symbols.
- Probablistic: Multiple paths possible but assume a random process choosing the paths.

Formal Definition

Probabilistic FSM model, $M = (Q, \Sigma, s_0, F, \Delta)$

- Set of states, Q (one identified as initial)
- Set of input symbols, Σ ("input alphabet")
- Initial state, $s_0 \in Q$
- Set of accepting states, $F \subseteq Q$
- Transition relation, ∆, that can generate the set of successor states given the current state and the set of transitions, T, each of the form (s, a, s')
- A probability p(s, a, s') associated with each transition, such that $\Sigma_{s'}$ p(s, a, s') = 1 for each s that has transitions.

For a trace for string $a_1a_2...a_k$ with probabilities on transitions $p_1p_2...p_k$

$$p_trace(a_1a_2...a_k) = p_1 \times p_2 \times ... \times p_k$$

Take the product because the trace requires that the steps in the trace occur conjunctively

Probability of Acceptance

 $p_accept(a_1a_2...a_k) = \Sigma p_trace(a_1a_2...a_k)$

Take the sum because acceptance is disjunctive across the traces

Example

$$p_accept(aaba) = \Sigma p_trace(aaba)$$

= (0.6×0.4×1×1) + (0.6×0.6×1×1)
= 0.24 + 0.36
= 0.6

Hidden Markov Models

Adapted probabilistic transducer model, $M = (Q, \Delta)$

- Set of states, Q, each state of the form (s,{(o₁,p₁),...(o_n,p_n)}) where o_i is an output observed at state s and p_i is the probability of observing that output when at that state.
- Transition relation, ∆, that can generate the set of successor states given the current state and the set of transitions, T, each of the form (s, s'). Note that transitions have no labels.
- A probability p(s, a, s') associated with each transition, such that $\Sigma_{s'}$ p(s, s') = 1 for each s that has transitions.

Example: Changes in Weather

Supposing that we start in state 1, what is the probability of observing the sequence: "cloud rain cloud sun"?

