
1

Informatics 1

School of Informatics, University of Edinburgh

Limits of FSMs

In this lecture we explore the limits of finite

state systems.

In the process we will show how to use

proof to demarcate a boundary on the use

of FSMs.

2

Informatics 1

School of Informatics, University of Edinburgh

Palindromes

A palindrome is a word that reads the same

forwards or backwards.

e.g. kayak, eye

Given alphabet  = {a,b} palindromes in * include:

a, b, aa, bb, aba, bab, aababaa

Theorem: There is no FSM that can recognise the

language of palindromes over  = {a,b}.

3

Informatics 1

School of Informatics, University of Edinburgh

Palindromes Proof: Step 1

Theorem: There is no FSM that can recognise the

language of palindromes over  = {a,b}

holds if we can show that it is contradictory to believe

that there exists a FSM that can recognise the

language of palindromes over  = {a,b}.

It is contradictory to believe that there exists a

deterministic FSM that can recognise the language of

palindromes over  = {a,b}.

Since any FSM can be translated into an equivalent

deterministic FSM, we shall prove that:

4

Informatics 1

School of Informatics, University of Edinburgh

s3k

Palindromes Proof: Step 2

Every FSM must have some finite number of states, k.

Suppose we have the palindrome akbkak

(where ak is the character a repeated k times)

s1 s0 sk sk+1 s2k s2k+1

a a b

Any accepting trace for akbkak must look like this:

k+1 states for the first ak

so we must visit the same state at least once

so there must be a loop in the FSM

5

Informatics 1

School of Informatics, University of Edinburgh

Palindrome Proof: Step 3

s0 q

ai

aj

We must visit the same state more than once when

reading the first ak so we have a loop after some

number (i) of a’s at some state (q). The loop will

consist of some number of a’s (j).

Reading ak-ibkak from state q reaches an accept state.

6

Informatics 1

School of Informatics, University of Edinburgh

Palindrome Proof: Step 4

s0 q

ai

aj

What happens if ak+jbkak is given to this FSM?

• Read i a’s to get to state q. Leaves ak+j-ibkak

• Do one loop at q, reading j a’s. Leaves ak-ibkak

• But ak-ibkak from state q reaches an accept state.

So a FSM that (correctly) accepts akbkak must also

(incorrectly) accept ak+jbkak for some j.

7

Informatics 1

School of Informatics, University of Edinburgh

Palindrome Proof:
Conclusion

 We have shown that a FSM that (correctly)
accepts akbkak must also (incorrectly) accept
ak+jbkak for some j.

 Therefore it is contradictory to believe that there
exists a deterministic FSM that can recognise the
language of palindromes over  = {a,b}.

 Therefore there is no FSM that can recognise the
language of palindromes over  = {a,b}.

8

Informatics 1

School of Informatics, University of Edinburgh

General Rule of Thumb

 No FSM if we need to count up to an arbitrarily
high value.

 This is because a FSM has no “memory” other
than its current state, and it has a finite set of
states.

 Examples:

– akbkak is a palindrome but anbkak is not (if nk)

– L = {0k1k | kN} has no FSM

Note that in both these cases the only way to ensure the later

number is right is to remember the value of the earlier number.

9

Informatics 1

School of Informatics, University of Edinburgh

Context Free Grammar

 A context free grammar is a set of production rules that

defines how strings in a language are generated from an

initial start symbol, grounding in terminal symbols.

S  aSa

S  bSb

S   | a | b

CFG production rules for palindromes:

10

Informatics 1

School of Informatics, University of Edinburgh

CFG Accepting a Palindrome

1. S  aSa

2. S  bSb

3. S   | a | b

aababaa

 aabSbaa

 aaSaa

 aSa

S

2

1

1

3

11

Informatics 1

School of Informatics, University of Edinburgh

Grammars for Regular
Expressions

 Consider a language defined by a regular
expression, say ab*a|ba*

 Can we define a context-free grammar for this
language?

12

Informatics 1

School of Informatics, University of Edinburgh

Grammars for Regular
Expressions

 Consider a language defined by a regular
expression, say ab*a|ba*

 Can we define a context-free grammar for this
language?

 Let us try to do this part by part for the regular
expression

13

Informatics 1

School of Informatics, University of Edinburgh

Grammars for Regular
Expressions

 Consider a language defined by a regular
expression, say ab*|ba*

 Can we define a context-free grammar for this
language?

 Let us try to do this part by part for the regular
expression

 For a, CFG is: S → a

14

Informatics 1

School of Informatics, University of Edinburgh

Grammars for Regular
Expressions

 Consider a language defined by a regular
expression, say ab*|ba*

 Can we define a context-free grammar for this
language?

 Let us try to do this part by part for the regular
expression

 For a, CFG is: S → a

 For b*, CFG is: S → bS; S → ε

15

Informatics 1

School of Informatics, University of Edinburgh

Grammars for Regular
Expressions

 Consider a language defined by a regular
expression, say ab*|ba*

 Can we define a context-free grammar for this
language?

 Let us try to do this part by part for the regular
expression

 For a, CFG is: S → a

 For b*, CFG is: S → bS; S → ε

 For ab*, CFG is: S → S1S2; S1 → a; S2 → bS2;
S2 → ε

16

Informatics 1

School of Informatics, University of Edinburgh

Grammars for Regular
Expressions

 Consider a language defined by a regular
expression, say ab*|ba*

 For ab*, CFG is: S → S1S2; S1 → a; S2 → bS2;
S2 → ε

 For ba*, CFG is: S → S1S2; S1 → b; S2 → aS2;

S → ε

 For ab*|ba*, CFG is: T → S; T → S’; S →
S1S2; S1 → a; S2 → bS2; S’ → S1’S2’; S1’ → b;
S2’ → aS2’; S2’ → ε

