## Limits of FSMs



In this lecture we explore the limits of finite state systems.

In the process we will show how to use proof to demarcate a boundary on the use of FSMs.

### Palindromes



A palindrome is a word that reads the same forwards or backwards. *e.g.* kayak, eye

Given alphabet  $\Sigma = \{a, b\}$  palindromes in  $\Sigma^*$  include: a, b, aa, bb, aba, bab, aababaa

<u>Theorem</u>: There is no FSM that can recognise the language of palindromes over  $\Sigma = \{a,b\}$ .



<u>Theorem</u>: There is no FSM that can recognise the language of palindromes over  $\Sigma = \{a,b\}$  holds if we can show that it is contradictory to believe that there exists a FSM that can recognise the language of palindromes over  $\Sigma = \{a,b\}$ .

Since any FSM can be translated into an equivalent deterministic FSM, we shall prove that:

It is contradictory to believe that there exists a *deterministic* FSM that can recognise the language of palindromes over  $\Sigma = \{a,b\}$ .

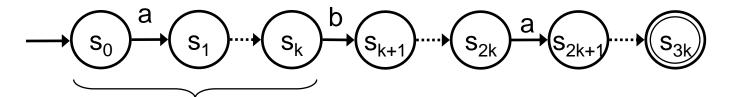
## Palindromes Proof: Step 2



Every FSM must have some finite number of states, k.

Suppose we have the palindrome a<sup>k</sup>b<sup>k</sup>a<sup>k</sup> (where a<sup>k</sup> is the character a repeated k times)

Any accepting trace for a<sup>k</sup>b<sup>k</sup>a<sup>k</sup> must look like this:

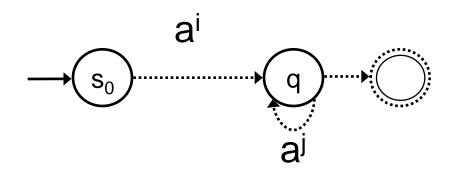


k+1 states for the first a<sup>k</sup> so we must visit the same state at least once so there must be a loop in the FSM

Informatics 1 School of Informatics, University of Edinburgh



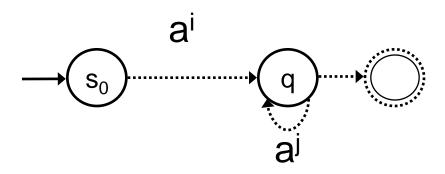
We must visit the same state more than once when reading the first a<sup>k</sup> so we have a loop after some number (i) of a's at some state (q). The loop will consist of some number of a's (j).



Reading a<sup>k-i</sup>b<sup>k</sup>a<sup>k</sup> from state q reaches an accept state.



What happens if  $a^{k+j}b^ka^k$  is given to this FSM?



- Read i a's to get to state q. Leaves  $a^{k+j-i}b^ka^k$
- Do one loop at q, reading j a's. Leaves ak-ibkak
- But a<sup>k-i</sup>b<sup>k</sup>a<sup>k</sup> from state q reaches an accept state.

So a FSM that (correctly) accepts a<sup>k</sup>b<sup>k</sup>a<sup>k</sup> must also (incorrectly) accept a<sup>k+j</sup>b<sup>k</sup>a<sup>k</sup> for some j.

### Palindrome Proof: Conclusion



- We have shown that a FSM that (correctly) accepts a<sup>k</sup>b<sup>k</sup>a<sup>k</sup> must also (incorrectly) accept a<sup>k+j</sup>b<sup>k</sup>a<sup>k</sup> for some j.
- Therefore it is contradictory to believe that there exists a *deterministic* FSM that can recognise the language of palindromes over  $\Sigma = \{a,b\}$ .
- Therefore there is no FSM that can recognise the language of palindromes over  $\Sigma = \{a,b\}$ .

# **General Rule of Thumb**



- No FSM if we need to count up to an arbitrarily high value.
- This is because a FSM has no "memory" other than its current state, and it has a finite set of states.
- Examples:
  - $-a^kb^ka^k$  is a palindrome but  $a^nb^ka^k$  is not (if  $n \neq k$ )
  - $-L = \{0^k 1^k \mid k \! \in \! \mathbb{N}\}$  has no FSM

Note that in both these cases the only way to ensure the later number is right is to remember the value of the earlier number.

## **Context Free Grammar**



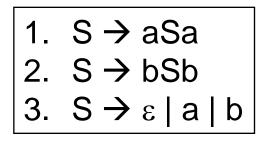
A context free grammar is a set of production rules that defines how strings in a language are generated from an initial start symbol, grounding in terminal symbols.

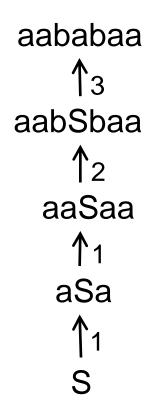
CFG production rules for palindromes:

$$S \rightarrow aSa$$
  
 $S \rightarrow bSb$   
 $S \rightarrow \epsilon | a | b$ 

# **CFG Accepting a Palindrome**







Informatics 1 School of Informatics, University of Edinburgh



- Consider a language defined by a regular expression, say ab<sup>\*</sup>a|ba<sup>\*</sup>
- Can we define a context-free grammar for this language?



- Consider a language defined by a regular expression, say ab<sup>\*</sup>a|ba<sup>\*</sup>
- Can we define a context-free grammar for this language?
- Let us try to do this part by part for the regular expression



- Consider a language defined by a regular expression, say ab<sup>\*</sup>|ba<sup>\*</sup>
- Can we define a context-free grammar for this language?
- Let us try to do this part by part for the regular expression
- For a, CFG is:  $S \rightarrow a$



- Consider a language defined by a regular expression, say ab<sup>\*</sup>|ba<sup>\*</sup>
- Can we define a context-free grammar for this language?
- Let us try to do this part by part for the regular expression
- For a, CFG is:  $S \rightarrow a$
- For  $b^*$ , CFG is:  $S \rightarrow bS$ ;  $S \rightarrow \epsilon$



- Consider a language defined by a regular expression, say ab<sup>\*</sup>|ba<sup>\*</sup>
- Can we define a context-free grammar for this language?
- Let us try to do this part by part for the regular expression
- For a, CFG is:  $S \rightarrow a$
- For  $b^*$ , CFG is:  $S \rightarrow bS$ ;  $S \rightarrow \epsilon$
- For  $ab^*$ , CFG is:  $S \to S_1S_2$ ;  $S_1 \to a$ ;  $S_2 \to bS_2$ ;  $S_2 \to \epsilon$



- Consider a language defined by a regular expression, say ab<sup>\*</sup>|ba<sup>\*</sup>
- For  $ab^*$ , CFG is:  $S \to S_1S_2$ ;  $S_1 \to a$ ;  $S_2 \to bS_2$ ;  $S_2 \to \epsilon$
- For ba\*, CFG is:  $S \rightarrow S_1S_2$ ;  $S_1 \rightarrow b$ ;  $S_2 \rightarrow aS_2$ ;  $_S \rightarrow \epsilon$
- For ab<sup>\*</sup>|ba<sup>\*</sup>, CFG is: T  $\rightarrow$  S; T  $\rightarrow$  S'; S  $\rightarrow$ S<sub>1</sub>S<sub>2</sub>; S<sub>1</sub>  $\rightarrow$  a; S<sub>2</sub>  $\rightarrow$  bS<sub>2</sub>; S'  $\rightarrow$  S<sub>1</sub>'S<sub>2</sub>'; S<sub>1</sub>'  $\rightarrow$  b; S<sub>2</sub>'  $\rightarrow$  aS<sub>2</sub>'; S<sub>2</sub>'  $\rightarrow$   $\epsilon$