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Limits of FSMs 

In this lecture we explore the limits of finite 

state systems. 

 

In the process we will show how to use 

proof to demarcate a boundary on the use 

of FSMs. 
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Palindromes 

A palindrome is a word that reads the same 

forwards or backwards. 

e.g. kayak, eye 

Given alphabet  = {a,b}  palindromes in * include: 

a,   b,   aa,  bb,  aba,  bab,  aababaa 

Theorem: There is no FSM that can recognise the 

language of palindromes over  = {a,b}. 



3 

Informatics 1 

School of Informatics, University of Edinburgh 

Palindromes Proof: Step 1 

Theorem: There is no FSM that can recognise the 

language of palindromes over  = {a,b} 

holds if we can show that it is contradictory to believe 

that there exists a FSM that can recognise the 

language of palindromes over  = {a,b}. 

It is contradictory to believe that there exists a 

deterministic FSM that can recognise the language of 

palindromes over  = {a,b}. 

Since any FSM can be translated into an equivalent 

deterministic FSM, we shall prove that: 
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s3k 

Palindromes Proof: Step 2 

Every FSM must have some finite number of states, k. 

Suppose we have the palindrome akbkak 

(where ak is the character a repeated k times) 

s1 s0 sk sk+1 s2k s2k+1 

a a b 

Any accepting trace for akbkak must look like this: 

k+1 states for the first ak 

so we must visit the same state at least once 

so there must be a loop in the FSM 
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Palindrome Proof: Step 3 

s0 q 

ai 

aj 

We must visit the same state more than once when 

reading the first ak so we have a loop after some 

number (i) of a’s at some state (q).  The loop will 

consist of some number of a’s (j). 

Reading ak-ibkak from state q reaches an accept state. 
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Palindrome Proof: Step 4 

s0 q 

ai 

aj 

What happens if ak+jbkak is given to this FSM? 

• Read i a’s to get to state q.  Leaves ak+j-ibkak 

• Do one loop at q, reading j a’s.  Leaves ak-ibkak 

• But ak-ibkak from state q reaches an accept state. 

So a FSM that (correctly) accepts akbkak must also 

(incorrectly) accept ak+jbkak for some j. 
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Palindrome Proof: 
Conclusion 

 We have shown that a FSM that (correctly) 
accepts akbkak must also (incorrectly) accept 
ak+jbkak for some j. 

 Therefore it is contradictory to believe that there 
exists a deterministic FSM that can recognise the 
language of palindromes over  = {a,b}. 

 Therefore there is no FSM that can recognise the 
language of palindromes over  = {a,b}. 
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General Rule of Thumb 

 No FSM if we need to count up to an arbitrarily 
high value. 

 This is because a FSM has no “memory” other 
than its current state, and it has a finite set of 
states. 

 Examples: 

– akbkak is a palindrome but anbkak is not (if nk) 

– L = {0k1k | kN} has no FSM 

Note that in both these cases the only way to ensure the later 

number is right is to remember the value of the earlier number.  
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Context Free Grammar 

 A context free grammar is a set of production rules that 

defines how strings in a language are generated from an 

initial start symbol, grounding in terminal symbols. 

S  aSa 

S  bSb 

S   | a | b 

CFG production rules for palindromes: 
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CFG Accepting a Palindrome 

1. S  aSa 

2. S  bSb 

3. S   | a | b 

aababaa 

      aabSbaa 

    aaSaa 

   aSa 

S 

2 

1 

1 

3 
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Grammars for Regular 
Expressions 

 Consider a language defined by a regular 
expression, say ab*a|ba* 

 Can we define a context-free grammar for this 
language? 
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Grammars for Regular 
Expressions 

 Consider a language defined by a regular 
expression, say ab*a|ba* 

 Can we define a context-free grammar for this 
language? 

 Let us try to do this part by part for the regular 
expression 
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Grammars for Regular 
Expressions 

 Consider a language defined by a regular 
expression, say ab*|ba* 

 Can we define a context-free grammar for this 
language? 

 Let us try to do this part by part for the regular 
expression 

 For a, CFG is: S → a 
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Grammars for Regular 
Expressions 

 Consider a language defined by a regular 
expression, say ab*|ba* 

 Can we define a context-free grammar for this 
language? 

 Let us try to do this part by part for the regular 
expression 

 For a, CFG is: S → a 

 For b*, CFG is: S → bS; S → ε 
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Grammars for Regular 
Expressions 

 Consider a language defined by a regular 
expression, say ab*|ba* 

 Can we define a context-free grammar for this 
language? 

 Let us try to do this part by part for the regular 
expression 

 For a, CFG is: S → a 

 For b*, CFG is: S → bS; S → ε 

 For ab*, CFG is: S → S1S2; S1 → a; S2 → bS2; 
S2 → ε 
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Grammars for Regular 
Expressions 

 Consider a language defined by a regular 
expression, say ab*|ba* 

 For ab*, CFG is: S → S1S2; S1 → a; S2 → bS2; 
S2 → ε 

 For ba*, CFG is: S → S1S2; S1 → b; S2 → aS2; 

S → ε 

 For ab*|ba*, CFG is: T → S; T → S’; S → 
S1S2; S1 → a; S2 → bS2; S’ → S1’S2’; S1’ → b; 
S2’ → aS2’; S2’ → ε 


