Limits of FSMs

In this lecture we explore the limits of finite
state systems.

In the process we will show how to use
proof to demarcate a boundary on the use
of FSMs.

Informatics 1
School of Informatics, University of Edinburgh



Palindromes

A palindrome is a word that reads the same
forwards or backwards.
e.g. kayak, eye

Given alphabet X = {a,b} palindromes in Z* include:
a, b, aa, bb, aba, bab, aababaa

Theorem: There is no FSM that can recognise the
language of palindromes over X = {a,b}.

Informatics 1
School of Informatics, University of Edinburgh



Palindromes Proof: Step 1

Theorem: There is no FSM that can recognise the
language of palindromes over X = {a,b}

holds if we can show that it is contradictory to believe
that there exists a FSM that can recognise the
language of palindromes over X = {a,b}.

Since any FSM can be translated into an equivalent
deterministic FSM, we shall prove that:

It is contradictory to believe that there exists a
deterministic FSM that can recognise the language of
palindromes over X = {a,b}.

Informatics 1
School of Informatics, University of Edinburgh



Palindromes Proof: Step 2

Every FSM must have some finite number of states, k.

Suppose we have the palindrome akbkak
(where ak is the character a repeated k times)

Any accepting trace for akbkak must look like this:
- O-O-0-@
- -~ ~

k+1 states for the first ak
so we must visit the same state at least once

so there must be a loop in the FSM

Informatics 1
School of Informatics, University of Edinburgh



Palindrome Proof: Step 3

We must visit the same state more than once when
reading the first ak so we have a loop after some

number (i) of a’s at some state (q). The loop will
consist of some number of a’s (j).

Reading akbkak from state g reaches an accept state.

Informatics 1
School of Informatics, University of Edinburgh



Palindrome Proof: Step 4

What happens if aktibkak is given to this FSM?

« Read i a’s to get to state . Leaves ak*-bkak
« Do one loop at g, reading j a’s. Leaves akbkak
« But ak'bkak from state q reaches an accept state.

So a FSM that (correctly) accepts akbkak must also
(incorrectly) accept ak*bkak for some j.

Informatics 1
School of Informatics, University of Edinburgh



Palindrome Proof:
Conclusion

e We have shown that a FSM that (correctly)
accepts akbka* must also (incorrectly) accept
aktipkak for some j.

e Therefore it is contradictory to believe that there
exists a deterministic FSM that can recognise the
language of palindromes over X = {a,b}.

e Therefore there is no FSM that can recognise the
language of palindromes over X = {a,b}.

Informatics 1
School of Informatics, University of Edinburgh



General Rule of Thumb

e No FSM if we need to count up to an arbitrarily
high value.

e This is because a FSM has no “memory” other
than its current state, and it has a finite set of
states.

e Examples:
— akbkak is a palindrome but a"bkak is not (if n#k)
—L = {Ok1k | keN} has no FSM

Note that in both these cases the only way to ensure the later
number is right is to remember the value of the earlier number.

Informatics 1
School of Informatics, University of Edinburgh



Context Free Grammar

A context free grammar is a set of production rules that
defines how strings in a language are generated from an
Initial start symbol, grounding in terminal symbols.

CFG production rules for palindromes:

S 2 aSa
S =2 bShb
S—>¢|alb

Informatics 1
School of Informatics, University of Edinburgh



CFG Accepting a Palindrome

1. S > aSa
2. S>> bSb
3. S2>¢|alb

aababaa

(K

aabShaa

12

aaSaa

M

aSa

1
S

Informatics 1
School of Informatics, University of Edinburgh

10



Grammars for Regular
Expressions

e Consider a language defined by a regular
expression, say ab’alba’

e Can we define a context-free grammar for this
language?

Informatics 1
School of Informatics, University of Edinburgh
11



Grammars for Regular
Expressions

e Consider a language defined by a regular
expression, say ab’alba’

e Can we define a context-free grammar for this
language?

e Let us try to do this part by part for the regular
expression

Informatics 1
School of Informatics, University of Edinburgh
12



Grammars for Regular
Expressions

e Consider a language defined by a regular
expression, say ab’|ba’

e Can we define a context-free grammar for this
language?

e Let us try to do this part by part for the regular
expression

e Fora, CFGis: S — a

Informatics 1
School of Informatics, University of Edinburgh
13



Grammars for Regular
Expressions

e Consider a language defined by a regular
expression, say ab’|ba’

e Can we define a context-free grammar for this
language?

e Let us try to do this part by part for the regular
expression

e Fora, CFGis: S — a
e Forb’, CFGis:S—>bS;S —> ¢

Informatics 1
School of Informatics, University of Edinburgh

14



Grammars for Regular
Expressions

e Consider a language defined by a regular
expression, say ab’|ba’

e Can we define a context-free grammar for this
language?

e Let us try to do this part by part for the regular
expression

e Fora, CFGis: S — a
e Forb’, CFGis:S—>bS;S —> ¢

e Forab’, CFGis: S — S,S,;S; — a; S, — bS,;
S, — ¢

Informatics 1
School of Informatics, University of Edinburgh

15



Grammars for Regular
Expressions

e Consider a language defined by a regular
expression, say ab’|ba’

e Forab’, CFGis: S — S;S,; S; — a; S,— bS,;
S, — ¢

e Forba’,CFGis: S — §;S,; S; — b; S, — aS,,.
s ¢

e Forab’lba’, CFGis: T—-S; T—-S;S —
S;S,; S, —a;S,—- bS5, S - 5,S,; S, — b;
S,’—asS,; S, — ¢

Informatics 1
School of Informatics, University of Edinburgh
16



