
1

Informatics 1
School of Informatics, University of Edinburgh

Regular Expressions and Regular Expressions and FSMsFSMs

In this lecture we explore part of the
relationship between language and state,
by studying how finite state machines
correspond to regular expressions.

In the process we will show how to design
a FSM for a regular expression.

2

Informatics 1
School of Informatics, University of Edinburgh

KleeneKleene’’ss TheoremTheorem

A language, L, is a regular language (accepted by
some FSM) if and only if there is some regular
expression, R, such that L(R) = L

We look at a proof of half of this theorem:

For all regular expressions, R, there exists a FSM
model, M, such that L(M) = L(R)

3

Informatics 1
School of Informatics, University of Edinburgh

Structure of the ProofStructure of the Proof

The proof is inductive. It shows that the
property holds for all the most primitive
(atomic) forms of regular expression; then it
shows that any extension to a larger, more
complex, regular expression preserves the
property.

4

Informatics 1
School of Informatics, University of Edinburgh

Atomic Regular ExpressionsAtomic Regular Expressions

Regular
expression

Intuitive meaning Equivalent FSM

∅ No string

ε Empty string

a Single symbol a

For every atomic regular expression, R, we can
construct a FSM model, M, such that L(M) = L(R).

5

Informatics 1
School of Informatics, University of Edinburgh

Larger Regular ExpressionsLarger Regular Expressions

M1 M2ε εεM1 M2

M1

M2

ε

ε

ε

ε

M1 |M2

M
M* ε ε

ε

ε

Regular expressions that can be combined have FSMs that can be combined.

Now consider each
of these three cases

6

Informatics 1
School of Informatics, University of Edinburgh

Case1: SequenceCase1: Sequence

M1 M2ε εεwe can construct

Suppose R

= R1 R2

Assuming that: • we have a machine M1 such that L(M1) = L(R1)
• we have a machine M2 such that L(M2) = L(R2)

which accepts the language
L(M1)L(M2) = { XY | X∈L(M1) and Y∈L(M2) }

= L(R1)L(R2)
= L(R1 R2)

7

Informatics 1
School of Informatics, University of Edinburgh

Case2: ChoiceCase2: Choice

we can construct

Suppose R

= R1 |R2

Assuming that: • we have a machine M1 such that L(M1) = L(R1)
• we have a machine M2 such that L(M2) = L(R2)

which accepts the language
L(M1)∪L(M2) = { X | X∈L(M1) or X∈L(M2) }

= L(R1)∪L(R2)
= L(R1 |R2)

M1

M2

ε

ε

ε

ε

8

Informatics 1
School of Informatics, University of Edinburgh

Case3: RepeatCase3: Repeat

we can construct

Suppose R

= R1 *

Assuming that: • we have a machine M1 such that L(M1) = L(R1)

which accepts the language
L(M1)* = ε ∪ L(M1) ∪

L(M1)2 ∪

L(M1)3

= L(R1)*
= L(R1 *)

M1ε ε

ε

ε

9

Informatics 1
School of Informatics, University of Edinburgh

Concluding the ProofConcluding the Proof

1. Every well formed regular expression is composed via the
application of sequence, choice or repeat operators to
smaller well formed expressions, ending always in atomic
expressions.

2. We have shown that there exists a FSM for every atomic
regular expression.

3. We have shown that for any valid combination of regular
expressions we can construct a FSM accepting the same
language, assuming that we were able to construct FSMs
for the sub-expressions.

4. This assumption always holds, given the structure at (1)

10

Informatics 1
School of Informatics, University of Edinburgh

Example: Example: Accept L((0|1)*11(0|1)*)

0

1

ε

ε

ε

ε

ε

εε

0

1

ε

ε

ε

ε

ε

εε

1 1

ε

ε

εε

ε

	Regular Expressions and FSMs
	Kleene’s Theorem
	Structure of the Proof
	Atomic Regular Expressions
	Larger Regular Expressions
	Case1: Sequence
	Case2: Choice
	Case3: Repeat
	Concluding the Proof
	Example: Accept L((0|1)*11(0|1)*)

