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Regular Expressions and Regular Expressions and FSMsFSMs

In this lecture we explore part of the 
relationship between language and state, 
by studying how finite state machines 
correspond to regular expressions.

In the process we will show how to design 
a FSM for a regular expression.
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KleeneKleene’’ss TheoremTheorem

A language, L, is a regular language (accepted by 
some FSM) if and only if there is some regular 
expression, R, such that L(R) = L

We look at a proof of half of this theorem:

For all regular expressions, R, there exists a FSM 
model, M, such that L(M) = L(R)
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Structure of the ProofStructure of the Proof

The proof is inductive.  It shows that the 
property holds for all the most primitive 
(atomic) forms of regular expression; then it 
shows that any extension to a larger, more 
complex, regular expression preserves the 
property.
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Atomic Regular ExpressionsAtomic Regular Expressions

Regular 
expression

Intuitive meaning Equivalent FSM

∅ No string

ε Empty string

a Single symbol a

For every atomic regular expression, R, we can 
construct a FSM model, M, such that L(M) = L(R).
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Larger Regular ExpressionsLarger Regular Expressions

M1 M2ε εεM1 M2

M1

M2

ε

ε

ε

ε

M1 |M2

M
M* ε ε

ε

ε

Regular expressions that can be combined have FSMs that can be combined.

Now consider each 
of these three cases
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Case1: SequenceCase1: Sequence

M1 M2ε εεwe can construct

Suppose   R
 

= R1 R2

Assuming that: • we have a machine M1 such that L(M1 ) = L(R1 )
• we have a machine M2 such that L(M2 ) = L(R2 )

which accepts the language
L(M1 )L(M2 )   =   { XY | X∈L(M1 ) and Y∈L(M2 ) }

=   L(R1 )L(R2 )
=   L(R1 R2 )
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Case2: ChoiceCase2: Choice

we can construct

Suppose   R
 

= R1 |R2

Assuming that: • we have a machine M1 such that L(M1 ) = L(R1 )
• we have a machine M2 such that L(M2 ) = L(R2 )

which accepts the language
L(M1 )∪L(M2 )   = { X | X∈L(M1 ) or X∈L(M2 ) }

=   L(R1 )∪L(R2 )
=   L(R1 |R2 )

M1

M2

ε

ε

ε

ε
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Case3: RepeatCase3: Repeat

we can construct

Suppose   R
 

= R1 *

Assuming that: • we have a machine M1 such that L(M1 ) = L(R1 )

which accepts the language
L(M1 )* =   ε ∪ L(M1 ) ∪

 
L(M1 )2 ∪

 
L(M1 )3

=   L(R1 )*
=   L(R1 *)

M1ε ε

ε

ε
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Concluding the ProofConcluding the Proof

1. Every well formed regular expression is composed via the 
application of sequence, choice or repeat operators to 
smaller well formed expressions, ending always in atomic 
expressions.

2. We have shown that there exists a FSM for every atomic 
regular expression.

3. We have shown that for any valid combination of regular 
expressions we can construct a FSM accepting the same 
language, assuming that we were able to construct FSMs 
for the sub-expressions.

4. This assumption always holds, given the structure at (1)
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Example: Example: Accept  L((0|1)*11(0|1)*)
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