Regular Expressions

In this lecture we introduce regular expressions and show how they relate to the specification of languages.

Languages Represented by Regular Expressions

Language	Definition
L(Ø)	Ø
L(ε)	{ε}
L(a)	{a}
L(ST)	$\{XY \mid X \in L(S) \text{ and } Y \in L(T)\}$
L(S T)	$\{X \mid X \in L(S) \text{ or } X \in L(T)\}$
L(S) *	$\varepsilon \cup \{X \mid X \in L(S)\} \cup \{X_1X_2 \mid X_1 \in L(S) \text{ and } X_2 \in L(S)\} \cup \dots$

Priority of Operators

- The Kleene star operator binds most tightly
- The concatenation operator is next
- Last, the choice operator
- Example: 1|01* is the same as 1|(0(1)*)

Example

L((a|b)c(d|e))

- $= \{XY \mid X \in L(a|b) \text{ and } Y \in L(c(d|e))\}$
- = $\{XY \mid X \in \{X \mid X \in L(a) \text{ or } X \in L(b)\} \text{ and } Y \in L(c(d|e))\}$
- = $\{XY \mid X \in \{X \mid X \in L(a) \text{ or } X \in L(b)\} \text{ and } Y \in \{X_1Y_1 \mid X_1 \in L(c) \text{ and } Y_1 \in L(d|e)\}\}$
- $= \{XY \mid X \in \{X \mid X \in L(a) \text{ or } X \in L(b)\} \text{ and } \\ Y \in \{X_1Y_1 \mid X_1 \in L(c) \text{ and } Y_1 \in \{X_2 \mid X_2 \in L(d) \text{ or } X_2 \in L(e)\}\}$
- = $\{XY \mid X \in \{X \mid X \in \{a\} \text{ or } X \in \{b\}\} \text{ and } Y \in \{X_1Y_1 \mid X_1 \in \{c\} \text{ and } Y_1 \in \{X_2 \mid X_2 \in \{d\} \text{ or } X_2 \in \{e\}\}\}$
- = { acd, bcd, ace, bce }

Laws for Choice

$$L(R | R) = L(R)$$

 $L(R | S) = L(S | R)$
 $L((R | S) | T) = L(R | (S | T))$

Laws for Sequence

$$L(\varepsilon R) = L(R) = L(R\varepsilon)$$

 $L(\emptyset R) = L(\emptyset) = L(R\emptyset)$
 $L((RS)T) = L(R(ST))$

Laws

$$L(R(S|T)) = L(RS|RT)$$

 $L((R|S)T) = L(RT|ST)$
 $L(RR^*) = L(R^*R)$
 $L(RR^*|\epsilon) = L(R^*)$
 $L((R|S)^*) = L((R^*S^*)^*)$
 $L((RS)^*R) = L(R(SR)^*)$

Example: L(0(10)*1 | (01)*) = L((01)*)

$$R(SR)^* = (RS)^*R$$

 $O(10)^* = (01)^*0$

$$R*R = RR*$$

01*01 = 01(01)*

$$R^* = RR^* | \epsilon$$

 $01^* = 01(01)^* | \epsilon$

$$R|R = R$$

01(01)*|01(01)* = 01(01)*

RR*|
$$\varepsilon = R^*$$

01(01)* | $\varepsilon = 01^*$

$$L((01)^*)$$