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NonNon--deterministic deterministic FSMsFSMs

In this lecture we expand our scope to 
include non-deterministic finite state 
systems.

In the process we will discuss structured 
design in system specification, and how 
modularity can be used to control the 
design process.
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Formal DefinitionFormal Definition

Set of states, Q  (one identified as initial)
Set of input symbols, Σ (“input alphabet”)
Initial state, s0∈Q
Set of accepting states, F ⊆ Q
Transition relation, Δ, that can generate the set
of successor states, given the current state and 
the set of transitions, T, each of the form (si-1, ii, 
si).

Non-deterministic FSM model, M = (Q,Σ,s0 ,F,Δ)
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Two Types of NonTwo Types of Non--determinismdeterminism

s∈Q
 

and  i∈Σ
 

and  (s, i, s1 )∈T
 

and  (s, i, s2 )∈T
 

and  s1 ≠s2

(s, ε, s1 )∈T
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Language of a NonLanguage of a Non--deterministic deterministic 
FSMFSM

Given: a FSM model, M = (Q,Σ,s0 ,F,Δ)
a string x∈Σ*

accepts(x, M) succeeds when there is a trace for x
 in M ending in an accepting state (sa ∈F)

Language of M:  L(M) = {x∈Σ* | accepts(x, M)}

For some language,  L⊆Σ*
L is a regular language if, for some M,  L(M) = L
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Example NonExample Non--deterministic deterministic 
FSMFSM

2 3b
a, b

10
aa

Accepts strings over Σ
 

= {a, b} ending aba

M = ({0,1,2,3}, {a,b}, 0, 3, Δ) Δ a b
0 {0,1} {0}
1 {2}
2 {3}
3
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Return to Earlier ExampleReturn to Earlier Example
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Accepts strings of 0’s and 1’s for which the number of 0’s so far 
never exceeds number of 1’s so far and vice versa.

What is this like as a non-deterministic FSM?
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NN--FSM for Earlier ExampleFSM for Earlier Example
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Δ 0 1 ε
1 {2, 5}
2 {3}
3 {4}
4 {8}
5 {6}
6 {7}
7 {8}
8 {1}

M = ({1,2,3,4,5,6,7,8}, {0,1}, 0, {1,3,6}, Δ)
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Structured Design: SequenceStructured Design: Sequence

M1 M2ε εε

M1 M2 M1 followed by M2

Accepts the language
L(M1 )L(M2 )   =   { XY | X∈L(M1 ) and Y∈L(M2 ) }
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Structured Design: ChoiceStructured Design: Choice

M1

M2

ε

ε

ε

ε

M1 |M2 M1 or M2

Accepts the language
L(M1 )∪L(M2 )   =   { X | X∈L(M1 ) or X∈L(M2 ) }
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Structured Design: RepeatStructured Design: Repeat

M

Accepts the language
L(M)* =   ε ∪ L(M) ∪

 
L(M)2 ∪

 
L(M)3

M* M repeated zero or more times

ε ε

ε
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