
1

Informatics 1
School of Informatics, University of Edinburgh

NonNon--deterministic deterministic FSMsFSMs

In this lecture we expand our scope to
include non-deterministic finite state
systems.

In the process we will discuss structured
design in system specification, and how
modularity can be used to control the
design process.

2

Informatics 1
School of Informatics, University of Edinburgh

Formal DefinitionFormal Definition

Set of states, Q (one identified as initial)
Set of input symbols, Σ (“input alphabet”)
Initial state, s0∈Q
Set of accepting states, F ⊆ Q
Transition relation, Δ, that can generate the set
of successor states, given the current state and
the set of transitions, T, each of the form (si-1, ii,
si).

Non-deterministic FSM model, M = (Q,Σ,s0 ,F,Δ)

3

Informatics 1
School of Informatics, University of Edinburgh

Two Types of NonTwo Types of Non--determinismdeterminism

s∈Q

and i∈Σ

and (s, i, s1)∈T

and (s, i, s2)∈T

and s1 ≠s2

(s, ε, s1)∈T

1
3a

a
1 2

a
a2

1

4
b

a
2 3

ε

5
c

4

Informatics 1
School of Informatics, University of Edinburgh

Language of a NonLanguage of a Non--deterministic deterministic
FSMFSM

Given: a FSM model, M = (Q,Σ,s0 ,F,Δ)
a string x∈Σ*

accepts(x, M) succeeds when there is a trace for x
 in M ending in an accepting state (sa ∈F)

Language of M: L(M) = {x∈Σ* | accepts(x, M)}

For some language, L⊆Σ*
L is a regular language if, for some M, L(M) = L

5

Informatics 1
School of Informatics, University of Edinburgh

Example NonExample Non--deterministic deterministic
FSMFSM

2 3b
a, b

10
aa

Accepts strings over Σ

= {a, b} ending aba

M = ({0,1,2,3}, {a,b}, 0, 3, Δ) Δ a b
0 {0,1} {0}
1 {2}
2 {3}
3

6

Informatics 1
School of Informatics, University of Edinburgh

Return to Earlier ExampleReturn to Earlier Example

1 32

4

0

0

0 1

1

1

0,1

Accepts strings of 0’s and 1’s for which the number of 0’s so far
never exceeds number of 1’s so far and vice versa.

What is this like as a non-deterministic FSM?

7

Informatics 1
School of Informatics, University of Edinburgh

NN--FSM for Earlier ExampleFSM for Earlier Example

40

1

2

0

1

8
5 7

1
3

6

ε

ε

ε

ε

ε
Δ 0 1 ε
1 {2, 5}
2 {3}
3 {4}
4 {8}
5 {6}
6 {7}
7 {8}
8 {1}

M = ({1,2,3,4,5,6,7,8}, {0,1}, 0, {1,3,6}, Δ)

8

Informatics 1
School of Informatics, University of Edinburgh

Structured Design: SequenceStructured Design: Sequence

M1 M2ε εε

M1 M2 M1 followed by M2

Accepts the language
L(M1)L(M2) = { XY | X∈L(M1) and Y∈L(M2) }

9

Informatics 1
School of Informatics, University of Edinburgh

Structured Design: ChoiceStructured Design: Choice

M1

M2

ε

ε

ε

ε

M1 |M2 M1 or M2

Accepts the language
L(M1)∪L(M2) = { X | X∈L(M1) or X∈L(M2) }

10

Informatics 1
School of Informatics, University of Edinburgh

Structured Design: RepeatStructured Design: Repeat

M

Accepts the language
L(M)* = ε ∪ L(M) ∪

L(M)2 ∪

L(M)3

M* M repeated zero or more times

ε ε

ε

ε

	Non-deterministic FSMs
	Formal Definition
	Two Types of Non-determinism
	Language of a Non-deterministic FSM
	Example Non-deterministic FSM
	Return to Earlier Example
	N-FSM for Earlier Example
	Structured Design: Sequence
	Structured Design: Choice
	Structured Design: Repeat

