Deterministic FSMs

In this lecture we focus on a specific class
of finite state system:

» deterministic FSMs

 that are acceptors

In the process we will show how logic can
be used to specify FSMs.

Informatics 1
School of Informatics, University of Edinburgh

Determinism

more than one transition leaving the state
for each input symbol.

In @ non-deterministic FSM, some states
have more than one transition leaving to
different successor states for the same
input symbol.

Sometimes non-deterministic FSMs are
easier to define.

Can always convert from a non-
deterministic to a deterministic FSM.

Informatics 1
School of Informatics, University of Edinburgh

Determinism and Traces

A FSM, M, is deterministic if for every string x&z*
there is at most one trace for X in M
(where X* is the set of all strings in alphabet of M)

non-deterministic (choice) deterministic (no choice)

B0

Sequence Trace

ba [1,b,1,3,2]
bb [1,b,1,b,1]

Informatics 1
School of Informatics, University of Edinburgh

Acceptors

Definition as before but:

| Empty output alphabet (all outputs are ¢)
| Some states marked as accepting.

i
——»O——»@—[acceptor state}

Input sequence is accepted if there is a trace from the
Initial state to an acceptor state.

Language of the FSM is the set of sequences it accepts.

Informatics 1
School of Informatics, University of Edinburgh

Formal Definition

Deterministic FSM acceptor model, M = (Q,X,s,,F,d)

Set of states, Q (one identified as initial)
Set of input symbols, X (“input alphabet”)

Initial state, s,€Q

Set of accepting states, F C Q

Transition function, 0, that produces as output the
successor state, given the current state and the
set of transitions, T, each of the form (s, 4, i,, S;).

Informatics 1
School of Informatics, University of Edinburgh

Acceptor Example

number of 1's is number of 1's and number of 0’s is
one larger than number of 0’s one larger than
number of 0’s are the same number of 1’s

0 1 (Trap state; we can

2 never reach an
1 éj@ 0 Lacceptor from here

Accepts strings of 0's and 1’s for which we never get more than two
O’s or 1's consecutively.

Informatics 1
School of Informatics, University of Edinburgh

Language of a Deterministic
FSM Acceptor

Set of strings whose (unique) traces end in an
accepting state (s,EF)

Accepts: ba b
bba M 3
bbba __,‘_,‘
...efc o @

Rejects: aba (no trace)
bbb (trace but not ending in accepting state)

Informatics 1
School of Informatics, University of Edinburgh

Example: Number Systems

Let n(B,S) be a function giving the number represented by the
string S in base B.
S is of the form d, ,...d,d,d, where each d, is a digit.

n(B, d,,...d,d,d,) = dy+Bxd, + B>d, + ... + BK'xd, , |= SBidi

i=0
— Decimal
n(10, 123) = 3+ 10x2 + 102x1 = 123
— Binary
n(2, 1111011) = 1 + 2x1 + 22x0 + 23x1 + 24x1 + 25x1 + 26x1 = 123

Unary
|Vn(1, 1111111) = 1+ 1x1 +12x1 + 13x1 + 14x1 + 15x1 + 16x1 = 7

Informatics 1
School of Informatics, University of Edinburgh

FSM for Odd Unary Numbers @

Q={12} 1
s = {1)

sO =1 __,@ 1

F =12}

6=-
1

2

2

Informatics 1
School of Informatics, University of Edinburgh

FSM for Odd Binary Numbers

Q={1,2}

s ={1,0} —(D——@))o-

sO =1

F = {2}

0= Undefined in table so assumed

to be to a non-accepting state

@0,1

2

: 2 0
2 2 |2 _’10’1

Informatics 1
School of Informatics, University of Edinburgh
10

Defining FSM Accept in Logic {):

FSM: model(Q,Z,S,,F,d)
String: o

accept(o) <
model(Q, Z, S, F, §) and
trace(S,, o, F, 9)

trace(S,[],F,0) <~ S&F

trace(S, [X|R], F,) <
(S,X,51) € 6 and
trace(S1,R, F, 9)

[] is the empty sequence

[X|R] separates first element, X,

from rest of sequence, R.

Informatics 1
School of Informatics, University of Edinburgh

1

Binary Odd —(D— 0’1

model({1,2}, {1,0}, 1, {2}, 9) 0 ={(1,1,2), (2,0,2), (2,1,2)}

|s the sequence [1,0,1] accepted?

trace(1, [1,0,1], {2}, o) trace(S, [I, F, 8) < Se&F
/
(1,1,2) € 8| |trace(2, [0,1], {2}, 0)

trace(S, [X|R], F, 8) <

(2,02)€8| |trace(2, [1], {2}, 9) (S,X,S1) € 6 and
trace(S1,R, F, 9)

(2,1,2) €8 trace(2, [], {2}, 9)

2 € {2

Informatics 1
School of Informatics, University of Edinburgh

