
Lecture 6

Inf1A: Transducers for Modelling
Systems

6.1 Introduction

In this lecture we will return to the study of transducer-style Finite State Machines. We
will specifically consider transducer-style FSMs for modelling computational systems.
We will see that important software engineering issues such as design, testing and veri-
fication are also important in the context of Finite State Machines.

Many computational systems that arise in practice are persistent systems, in the sense
that we do not think of them as computing one limited computational function; but
rather as performing an arbitrarily-long series of small actions in response to a arbitrarily-
long sequence of inputs (or stimuli). Finite State Machines can be very effective for
modelling such systems.

We will base this lecture on a single case study of a particular persistent system, the
Cruise-Control system commonly found in modern cars. We will consider design, testing,
verification and implementation issues for this system. In fact, although this lecture note
is quite different to the lecture notes for the other Finite State Machine lectures, we will
see that we have been dealing with these issues right throughout the course.

Cruise Control Systems

On long car journeys some drivers find it tiring to keep up continuous pressure on the
accelerator pedal. To avoid the need to do this many cars now have an embedded system
called cruise control. This is a controller that directly links the driver with the throttle
that determines how fast the car travels. The cruise control system allows the driver
to specify the particular speed that he/she wants to travel at, and then the controller
maintains that speed until the driver changes the speed, uses the brake, or switches the
system off.

Cruise Control systems are more commonly found in American cars than in British cars
(and are probably more useful on long US highways), but they have also become rea-
sonably common in Britain over the last few years. A Cruise Control system is usually
controlled by a number of push-buttons on the dashboard or on the steering wheel of

38



Computation & Logic: Lecture 6 on Computation Informatics 1A (2004)

the car. The system usually has different modes of operation depending on the different
buttons which have been pushed so far. In this lecture we will see that these modes of
operations (and any subsidiary states) can be modelled by the states of a Finite State Ma-
chine. We will see that changes in the mode of operation can be modelled by transitions
of a transducer-style Finite State Machine.

6.2 Specification of the System

In modelling a computational system, we have to make choices about the level of spec-
ification we will give for that system. By specification, we mean a precise description
of how the system adapts as a response to certain inputs. For very complex software
engineering systems, we often design the system as a series of increasingly detailed de-
signs - and in this case, the top-level specification will be a very high-level specification
(not giving too much detail). However, when we are modelling a small embedded system
(such as a Cruise control system) with limited functionality, it can be possible to give a
low-level specification that is not too complex.

The specification for a system is different to a program or an implementation of the
system, because a specification should describe what the system should do - not how
it does it. You will see that in later years that when formal specification languages are
used to specify computational systems, these languages tend to be based on some form
of logic.

We will now specify (in English) some very basic properties that we expect of our Cruise
Control system.

1. The driver should always be able to turn the Cruise Control system off.

2. The driver should be able to tell the system to maintain the current speed.

3. The Cruise Control system should not operate after braking

4. The Cruise Control system should allow the driver to travel faster than the set speed
by using the accelerator.

A real world system would have one or two extra features but would be quite close to
this. In practice, a specification will often be more precise than what we have written for
the Cruise Control system.

6.3 Design

In software engineering, the second step in constructing a system is to come up with a
design that adheres to the specification.

In our design for the Cruise Control system, we will have three decisions to make: we
need to decide what are the inputs and outputs to the system, what are the modes (or
states) of the system, and what are the effects of the inputs on the system in each state.
The third of these aspects will determine the behaviour of our system. We will need to
specify the desired effect of an input, for every possible state the system can be in.

Our inputs will be taken from (i) the driver and (ii) the vehicle. They are:

39



Computation & Logic: Lecture 6 on Computation Informatics 1A (2004)

� on: on/off button

� set: set the cruise speed to the current speed

� brake: the brake has been pressed

� accP: the accelerator has been pressed

� accR: the accelerator has been released

� resume: resume travelling at the set speed

� correct: indicates the car is travelling at the correct speed.

� slow: indicates the car is going slower than the set speed

� fast: indicates the car is going faster than the set speed

The outputs are:

� store: store the current speed as the cruise speed

� inc: increase the throttle

� dec: decrease the throttle

The main states (or modes) of the controller for the system are:

Off: The Cruise Control system is not operational.

Ready: The system is switched on but so far no speed has been set to cruise at.

Set: A cruise speed has been set and the system is maintaining it.

Wait: The system has a set cruise speed but at some time the driver used the brake and
caused the system to wait until the resume button is pressed to bring the car back
into cruise control.

Acc: The system has a set cruise speed but the accelerator has been pressed to override
cruise control until the accelerator is released.

We describe the behaviour of the system by defining the “next state” that will result from
a given input to a given state. The purpose of the design phase is to refine the specifica-
tion to describe a behaviour for the system, which will conform to the specification. In
other words, we describe how the system can be constructed (without implementing it -
that is the final phase). The purpose of carrying out the design phase is to work out how
the system will be realised, without worrying about implementation-dependent issues.
Our design should be in a form to make it easily to implement. Therefore when we model
a system as an FSM, the FSM should be a deterministic (usually transducer-style) FSM.

For our Cruise Control system, we will give this definition of the system behaviour in di-
agrammatic form, as a Finite State Machine (see Figure 6.1). Any label of the form in/out
in the FSM should be read as meaning that output out is generated on the transition for
input in. Note that our machine is deterministic, but not strictly deterministic. In general
we would require a strictly deterministic design, because we will want to design a system

40



Computation & Logic: Lecture 6 on Computation Informatics 1A (2004)

accP

set,brake,accP,accR,

brake,accP,accR,resume

accR, set/store
brake

accP

resume

on

brake, set

accP,resume

on on on

correct

Acc

Set

on

Ready

Off

slow/inc
Wait

fast/dec

set/store brake

resume

Figure 6.1: An FSM describing the behaviour of the Cruise Control system

whose behaviour is defined for all sequences of inputs. However, for the design of the
cruise control FSM, we use some simple facts about cars (for example, the accR input
can only directly follow a accP input) to allow us to omit some transitions.

In general, when using FSMs for the design phase of the software engineering cycle,
it is sometimes useful to assume that if a particular state has no transition for some
input, this corresponds to having a loop (with no output) back to the same state on that
input. Notice that this is entirely different to what we assume for acceptor-type FSMs
(and even most transducer-type FSMs). You shouldn’t ever assume this by default - only
when you are told this assumption is being made.

6.4 Testing

Many errors in the software engineering life cycle creep in at the design phase, and can
be discovered at this stage. Therefore testing our design of a system (in reference to a
specification for the system) is an important step.

In testing the system we might first want to explore the behaviour of the system to see
if we can discover anomalous behaviour. To do this we might imagine using the FSM
to derive sequences of actions. In testing we usually use a coverage criterion to limit
how much testing we do. Because the Cruise Control Finite State Machine of Figure 6.1
is very small we might want to use an “all paths” criterion where the set of test inputs
covers all the possible paths through the finite state machine (for very large machines we

41



Computation & Logic: Lecture 6 on Computation Informatics 1A (2004)

can’t do this).

The most important part of the testing phase is ensuring that the properties of the
specification are satisfied by the design.

For the Cruise Control example, it is not too difficult to check that properties 1.-4. given
in Section 6.2 are satisfied by the design of Figure 6.1. For example, clearly property 1.
is satisfied, because there is a transition from each state of the FSM to the Off state,
where this transition is taken when there is a second push of the on (power) button.

Another way of testing the design involves considering the transitions from each state
in turn and checking that their effect is correct. In our example consider the effect of
a set operation in the Wait state. In our current design, trying to re-set in the Wait
state has no effect. However, it might be the case that we would prefer that the effect
would be to do a store output to reset the cruise speed, and transition to the Set state.
Then the design FSM would need to have an arrow labelled set/store from Wait to Set,
instead of looping at Wait. Note that this choice (for the effect of pressing set while in
the Wait state) is a design issue, since the desired behaviour was not given as part of the
specification.

6.5 Implementation

A finite automaton is a fairly abstract, idealised, notion of a computing device. It is very
useful for supporting design activities for a wide class of systems, as we have seen with
the Cruise Control example. In fact a number of Software Engineering Tools to support
design with Finite State Machines are available on the internet: a few examples are
Esterel, Lustre and Argos.

To actually construct a computational system for use in the real world, it is necessary
to move from the abstract to an actual implementation. This is the final step in the
Software Engineering life cycle. The implementation step often requires us to make a
lot of decisions about how we will realise our design in terms of hardware and software.
Some issues that will become important are:

� It will be necessary to work out the notion of the input in the idealised definition
relates to signals or computer inputs in the implementation. In the Cruise Control
example we just consider a sequence of symbols as the input. In an implementation
each input to the controller will be a different signal from the sensors (pushbuttons,
movement sensors, position sensors etc) picking up information from the driver and
the car.

� We need to decide how to represent the states of the Finite Automaton. In hardware
this will be done using flip-flops or memory. In software we will use some program
variables to represent the state as stored values. In any case, the number of possi-
ble states in the implementation is likely to be quite a bit larger that the number of
states in the abstract description of the Finite Automaton.

� Finally we need to decide how the outputs of a Finite Automaton are realised as
signals or computer outputs in the implementation.

Once these implementation issues have been dealt with, we need to ensure that our
implementation is a faithful representation of the design. When the design is done as a

42



Computation & Logic: Lecture 6 on Computation Informatics 1A (2004)

Finite State Machine, we expect that the implementation should accept the same input
sequences as the FSM and that for any given input, the implementation should generate
the same output as the FSM (subject to our decisions about how we realise inputs and
outputs in software and hardware).

In practice, the implementation of a system will involve an extensive testing phase.

Testing: This is an approach to finding flaws in the implementation. The usual ap-
proach to testing is to define a collection of test inputs that are chosen to attempt to
ensure that the program will work in all contexts. In the Cruise Control case we might
choose the test set to be all non-looping sequences of inputs in the Finite State Machine.
This would exercise all the transitions in the design and might give some confidence they
had been implemented correctly.

For safety-critical systems, testing is not enough. Usually it is necessary to have a
verification phase, where we formally prove (by some method of formal reasoning like
Logic) that the system is guaranteed to behave correctly (and safely) for all possible
sequences of inputs.

6.6 Summary

We will not cover the implementation of the Cruise Control system in this course. It
would certainly be possible to implement the software for the Cruise Controller in an
appropriate programming language, possibly in Java (which you will study in Informatics
1B next semester).

Remember that we have seen some implementations of Finite State Machines already
during the Computation section of Informatics 1A. In Lecture note 2 we showed how
to implement a FSM to recognise odd numbers in unary in Haskell. Also, in our lab for
week 8, most of you will have implemented a number of Finite State Machines in Haskell.
For all these implementations, you will have informally tested your implementation to
make sure it gives the same results as the original FSM.

These notes have been adapted from two sets of earlier notes, the first due to Stuart Anderson,
Murray Cole and Paul Jackson, and the second due to Martin Grohe and Don Sannella.

Mary Cryan, November 2004

43


