
Lecture 5

Inf1A: Limits of Finite State
Machines

5.1 Introduction

In this lecture we will look at the limitations of Finite State Machines. We will see that
the most appealing property of Finite State Machines (their simplicity) has a limiting
effect on the types of computations that can be performed by an FSM.

We will give an example of a natural language, the language consisting of all palindromes
over the alphabet

�
, which nevertheless cannot be accepted by any FSM. Therefore it is

not a regular language, and (using what we know from Lecture 4) it cannot be repre-
sented by any regular expression. There are many other examples of languages which
cannot be accepted by any FSM. As a rule, the languages which cannot be accepted by
FSMs tend to be languages which require a “count” of a possibly unlimited value (or a
“record” of possibly unlimited size) to be maintained.

We will give a very gentle introduction to another class of languages called context-free
languages, which are not in general accepted by Finite State Machines. We will show
that because this class of languages is more powerful, the set of palindromes can be
represented by a context-free grammar.

5.2 “Palindromes” is not a regular language

Let
�

be any alphabet. A palindrome is any string (or “word”) over that alphabet that
reads the same either forwards or backwards. For example, in the English language, the
strings RADAR, KAYAK, NOON and EYE are all palindromes.

If we take the alphabet
�����

a � b � , some examples of palindromes in
���

are

	 , a, b, aa, bb, aaa, aba, . . .

Now we will prove a theorem that tells us that there is no Finite State Machine that
recognises the set of palindromes over the alphabet

�
���
a � b � . Although we work

with
���
�

a � b � , the proof will go through for any alphabet which has at least two sym-
bols. It’s a nice exercise to check this!

32

Computation & Logic: Lecture 5 on Computation Informatics 1A (2004)

Theorem 5.1: There is no Finite State Machine to recognise the set of palindromes over
the alphabet

�
a � b � . Therefore the set of palindromes over

�
a � b � is not a regular language.

Proof: We prove this Theorem using the technique of proof by contradiction. That means
that we assume the opposite of what we want to prove, and make a series of logical
deductions from our assumption. If we eventually end up contradicting ourselves, then
we know that our assumption is not consistent with what we know, and therefore it
must be false.

So, suppose that the Theorem is false. Well then there must be some Finite State Ma-
chine that accepts the language of palindromes over

�
ab � . Also, because every Non-

deterministic Finite State Machine can be converted into an equivalent Deterministic
Finite state Machine (to accept the same language), therefore in fact there is some deter-
ministic Finite State Machine that accepts the language of palindromes over

�
a � b � . Let

this deterministic FSM be called � .

Now, � is a FSM, which means that it must have a finite number of states. We should
not make any assumptions about how many states � has (well, we can assume that �
has at least � states), so instead let us use the symbol � to represent the (unknown) finite
number of states of � . Now let us use a trick, working with this unknown number of
states � .

Think about the string a � b � a � , where ��� means “ � repeated � times”. Now clearly this
string is a palindrome, because it reads the same both backwards and forwards. There-
fore, since � is a machine accepting the language of palindromes over

�
a � b � , it must

accept the string a � b � a � .

Now think about the trace that the string a � b � a � takes through the FSM � (because
our string is accepted, and because � is deterministic, it must have exactly one trace).
Remember for a D-FSM, that whenever a computation takes a transition in the D-FSM,
exactly one input symbol is read. When we start reading a � b � a � , we start at the start
state ��� of our unknown machine � . As we read each input symbol, we take a transition.
The trace of the machine will look like

��� � a �	��
 �
����� � a ��� � � b �	� ���
 ������� � b �	��� � � a �	��� ���
 ������� � a �	��� � �
where each of the ��� are states of the machine � (though not all different states). No-
tice that in reading just the first � symbols of our string, which are all as, we take �
transitions. The list of states visited while reading the first � symbols of our string, is
��� ����
 ������� ��� � . Now this list has ����� elements, but there are only � states in the ma-
chine � in total. So that means that in the list � � ���
 ������� ��� � (which has length �����),
there must be some state from � s state set which occurs more than once. Also, since �
is deterministic, every transition consumes one input symbol, so the machine reads at
least one a in between two visits to this state.

Let the state that is revisited be called � 1 and let � (for some value � �!�"�#�) be the
number of as read in between two visits to � (we are not going to try to make any guesses
about the exact number of as that are read). Also, let $ be the number of as that are read
before the first visit to � . Since the string a � b � a � is accepted by the FSM starting at � � ,
the string a ��%'& b � a � is accepted by the FSM when starting at � .

There is a diagrammatic representation of the section in Figure 5.1 below (remember

1By the way, if there are two or more states which are revisited, just choose the first of these states (that
the computation meets) for (.

33

Computation & Logic: Lecture 5 on Computation Informatics 1A (2004)

that the loop from � to itself may pass through many states on its return to � , even
though they are not represented).

���

�

..
.

. . . .a
a

a
�

Figure 5.1: Diagram of the “loop” that we encounter in reading a �

Now consider the new string a ��� � b � a � . Think about what happens when this string is
input to � . Well, the trace for reading the first $ as leads to the state � , by definition of $
above. Then the remaining string to be read (starting at �) is a � � � %'& b � a � . Now remember
that if we read � as starting at state � , we will return to � . Then the remaining string to
be read (starting again from �) is a ��%'& b � a � . However, we already know (by our analysis of
string a � b � a � above) that the string a ��%'& b � a � will be accepted when we start reading this
string from � .

Therefore, the machine � will accept a ��� � b � a � also. However this string is not a palin-
drome! This is a contradiction. Therefore our assumption that there exists an FSM � to
accept the set of strings over

�
a � b � which are palindromes must have been incorrect. �

The idea of proof by contradiction is difficult to get used to when it is new to you. In
doing these proofs, the most important thing is that you have to make sure that apart
from your main assumption (which is the opposite of what you want to prove) you must
make no other assumption at all, and only make deductions which are rigorously true.
Then at the end, when you do get a contradiction, there is only one thing that could have
caused this contradiction, your original assumption. Hence that assumption must be
false (and you have proven your real goal).

5.3 Context-free Grammars and Context-free Languages

5.3.1 Non-regular languages

Theorem 5.1 above shows that there are some languages (our example was the language
of palindromes) which are not regular - that is, they do not correspond to the language
accepted by any FSM, and equivalently, there is no regular expression to represent the
language.

The language of palindromes is not just a freak exception, as there are many other
languages which cannot be accepted by any FSM. Another example of a language which

34

Computation & Logic: Lecture 5 on Computation Informatics 1A (2004)

cannot be accepted by any FSM (or equivalently, cannot be represented by any r.ex.) is

� � �
0 � 1 �������	� ���

In general, non-regular languages tend to be those languages which require an arbitrarily
large “count” (or “record” of the part of the string which has been seen) to be maintained
during the process of reading the string. This is not possible with a Finite State Machine,
because it only has a limited finite amount of storage available.

5.3.2 Context-free Languages

However, there are other formal representations for specifying languages apart from
regular expressions, and some of these allow us to specify some non-regular languages.
One such example is the notion of a Context-Free Grammars. We are not going to study
these in detail, but we will give a taste. Here is the formal definition.

Definition 5.2: A Context-free Grammar is defined by a
 -tuple �
� � � ��� ����� , where � is a
set of non-terminal (or variable) symbols,

�
is a an alphabet of terminal symbols, where

��� � ��� , where ����� is the start symbol, and � is a set of production rules of the form�����
, for

� ��� and
� ���
�� � � � .

Definition 5.3: Let �
� � � ��� ���!� be a Context-free Grammar.

(i) Let " �#"%$&�'�
�(� � � . We say that "*) "%$ if and only if there is some production rule�+�,� ��� such that we can obtain " $ by replacing some instance of the variable
�

in "
by the expression

�
.

(ii) We say that "-) � " $ if and only if there is some �.�(� , and some sequence " � �
" �#"
 ����� �#" �

� "%$ such that "���) " � �
 for every � �0/ ������� �#�21 � . (when � ��/ we have
" � " $). The sequence

"�)3"
) �����4)-" $
is called a derivation of the grammar.

(iii) The language
� �
56� is defined as the following set of strings of terminals:

� �
57� � � "(� � � �8��) � " ���

We say that a language
�

is a Context-free Language if and only if there is some Context-
free Grammar 5 such that

� ��� �
56� .
In general, we say that a string "+�9�
�' � � � (which can contain both terminals and
non-terminals) is generated by 5 if ��) � " .

The definition looks quite formal, but in practice context-free grammars are quite easy
to work with. On the next page we give a context-free grammar to generate the set of
palindromes over the alphabet

�
a � b � .

35

Computation & Logic: Lecture 5 on Computation Informatics 1A (2004)

We define 5������ � �
� �
� � � ��� ����� as follows:

Let � ��� � � .
Let
�����

a � b � .
The start symbol is � .
The set of production rules � is defined as the following set of rules: 2

� � �
a � a

� �
b � b

� � 	 � a � b �

First we will give an example of a derivation of an element of
� �
5������ � � � :

�+) b � b) ba � ab) baaab �

Notice that the first step of the derivation is obtained by using the second production
rule, the second step by using the first derivation rule, and the final step by using one
of the options of the third derivation rule.

Now clearly, baaab is a palindrome. Also, it is probably clear to you that any string of
terminals (ie, of as and bs) generated by 5������ � � will be a palindrome. We need to argue in
the opposite direction. Is it true that every palindrome over

�
a � b � can be generated by

the grammar 5������ � � ?
I argue now that the reason is yes. Consider an arbitrary palindrome over

�
a � b � . There

are three cases to consider - the empty string 	 , a non-empty string of even length, and
a string of odd length. In the empty string case, we have an immediate production rule
which we can use to derive 	 in one step. In the case where the palindrome is non-
empty, and the length is an even number ��� , we simply list the first � elements of the
palindrome, then apply the rules by following that list, applying the first production
rule when we see an a and applying the second rule when we see a b. We finish with
an application of the � � 	 rule. In the case where the palindrome has some odd
length ��� � � , we again list the first � elements of the string, and perform a sequence of
applications of the first and second rules, using the list to determine which rule should
be applied at each step. Then we finish by checking the � ��� th element of the palindrome,
and by using either the rule � � a or the rule � � b appropriately.

This is not a formal proof (the best way to formally prove that
� �
5����	� � � � generates the

language of palindromes is to use proof by induction). But I hope the general argument
above is convincing.

As a general comment, you might have noticed that context-free grammars are syntac-
tic definitions, like regular expressions. However, we know that the class of languages
represented by regular expressions is equivalent to the class of languages accepted by
Finite State Machines. So we have a computational view of regular expressions as well
as the basic definition. In later years of the Informatics course you will learn that it is ac-
tually possible to relate context-free languages to the computational model of pushdown
automatas.

As another general comment, there exist languages (called context-sensitive languages)
which cannot be generated by any context-free grammar.

2The last production rule is equivalent to writing five rules
���
���
�� a and
�� b. It is common to use
the � operator to shorten the list of production rules.

36

Computation & Logic: Lecture 5 on Computation Informatics 1A (2004)

5.4 Online resources

1. For more information on context-free languages see Wikipedia at:

http://en.wikipedia.org/wiki/Context-free language

2. Context-free grammars are commonly used to define the language of all syntactically-
correct programs in a given language. When this is done, the format of the Grammar
description is given in a slightly different form known as Backus-Naur form.

I had a look for Backus-Naur form descriptions of the Java programming language (which
you will cover next semester) on the web.

There is an official description at the following webpage (but this is not really Backus-
Naur form).

http://java.sun.com/docs/books/jls/second edition/html/syntax.doc.html

There is a Backus-Naur definition of Java at the webpage given below:

http://www.math.grin.edu/ stone/courses/languages/Java-syntax.xhtml

It is nicer to read than the link above, even though it is not an official document.

These notes have been adapted from two sets of earlier notes, the first due to Stuart Anderson,
Murray Cole and Paul Jackson, and the second due to Martin Grohe and Don Sannella.

Mary Cryan, November 2004

37

