Lecture 4

InflA: Regular Expressions

4.1 Introduction

In Lectures 1 to 3 of this Computation section of InflA we have been learning all about
Finite State Machines. We have covered both Deterministic Finite State Machines (D-
FSMs) and Non-deterministic Finite State Machines (N-FSMs) in some depth, and dis-
cussed the differences between them. In the tutorial for week 9 (this week), we have seen
a procedure called the Conversion procedure for converting an acceptor-type N-FSM into
an acceptor-type D-FSM. We have not formally proved that this conversion procedure
always constructs a D-FSM to accept exactly the same language (next year), but we have
given some good evidence for this fact. From now on we will take it as read that the class
of languages accepted by general FSMs is exactly the same class of languages accepted
by deterministic FSMs. Recall from Lecture 3 that this class of languages is called the
class of regular languages. We are going to study this class of languages in more depth
in this lecture and the next one.

Although Finite State Machines look quite appealing and it is fun to work out which
language an FSM accepts, they get quite complicated as the number of states and tran-
sitions increases. It would be nice to have a shorthand for talking about Finite State
Machines and the languages they accept. We will concentrate on this task in this lec-
ture. We first introduce a mechanism for defining certain types of languages over a finite
alphabet ¥. We will refer to the expressions that we use to represent these types of
languages as regular expressions (r.ex.s). We will give the syntax for regular expressions,
and give rules for determining which language is represented by a regular expression.

So what is the connection between the languages represented by regular expressions
and our Finite State Machines? Well, in fact there is a theorem, called Kleene’s theorem,
which proves that the class of languages represented by some regular expression is
exactly the same class of languages accepted by some FSM. In this lecture we will see
just one half of Kleene’s theorem - we will show that for every r.ex. R, we can construct a
Finite State Machine to accept the language represented by R. The other half of Kleene’s
theorem (for every FSM, there is some r.ex. that represents the language accepted by
that machine) is harder. It will probably be proved in Informatics 2.

Independently of their relationship to Finite State Machines, regular expressions are
important in Computer Science and Artificial Intelligence as a method for describing
patterns of symbols (eg in UNIX commands, text processing and compilers).

26

Computation & Logic: Lecture 3 on Computation Informatics 1A (2004)

4.2 Regular Expressions

We define regular expressions (r.ex.s) in two stages in this section. We will first describe
the syntax of regular expressions, which tells us what are valid ways of writing down
regular expressions. We then define the meaning of a regular expression R, which tells
us which language is represented by R. We give some examples of r.ex.s in practice.
Finally we give some algebraic laws relating certain regular expressions to others.

4.2.1 Syntax of Regular Expressions

We define the syntax of regular expressions in an inductive fashion. We do this by first
defining the atomic regular expressions (these are r.ex.s that cannot be decomposed) and
then giving operators that allow us to build large regular expressions by putting together
smaller regular expressions according to the rules. The syntax of regular expressions
will depend on our symbol alphabet 3.

Atomic r.ex.s

Here are the rules telling us which are the atomic r.ex.s over .

e The empty set symbol { is an (atomic) r.ex..

e The symbol ¢ is a (atomic) r.ex. We will see that this represents the empty string of
symbols (a string with length 0).

e Any symbol from the input alphabet ¥ is a (atomic) r.ex. We use t ypewr i t er font
to represent symbols, eg a or b (if ¥ is an alphabet containing these constants).

Sometimes we will use variables like R, S, T, ... to range over regular expressions, when
we want to talk about a general r.ex... This will not necessarily mean that such a variable
denotes an atomic expression.

Operators

We use operators to combine small regular expressions to make bigger, more complex,
regular expressions. The standard version of regular expressions uses three operators
which may look familiar (in the context of Lecture 3 of this course). These operators are:

Sequence: If R and S are regular expressions then RS is also a regular expression.
This operation is also called concatenation.

Choice: If R and S are regular expressions then R | S is also a regular expression.
This operator is sometimes called union.

Repeat: If R is a regular expression then R* is also a regular expression.
This is sometimes called the Kleene star operation.

Just as in Logic, and in Haskell, we need to have a rule to tell us how an expression
should be grouped, even when some parentheses are missing. The rule for r.ex.’s is that
the Repeat operator binds most tightly (ie. repeat is “done first”), the Sequence operator
binds the next most tightly, and the Choice operator binds the least tightly (ie, choice is
“done last”).

27

Computation & Logic: Lecture 3 on Computation Informatics 1A (2004)

4.2.2 Language represented by a regular expression

We now give a set of rules to associate every well-formed regular expression with the
language that it represents. Recall from our earlier lectures that a language over the
alphabet ¥ is just some set of strings from X*. We now give an inductive definition of the
language L(R) represented by a well-formed regular expression R:

Empty set: L(0) = (. So the language represented by the () symbol is the empty language
(the language containing no elements).

Empty string: L(e) = {e}. The language represented by the e symbol is the language
containing just a single string, which is the empty string e.

Symbol a: For any symbol a € ¥, we define L(a) = {a} (the language containing just a
single string, which is the string a).

Sequence: For any r.ex. R which is of the form R = ST, we define

L(R) = L(S)L(T) = {zy | z € L(S),y € L(T)}.
Choice: For any r.ex. R which is of the form R = S | T, we define
L(R) = L(S) UL(T) = {z | x € L(S)} U{y | y € L(T)}.
Repeat: For any r.ex. R which is of the form R = S*, we define

L(R) = L(S*") = {efu{z|ze L(S)}U{ziz2 | 21,20 € L(S)} U...
= {z1...zp | n €N zq,..., 2y € L(S)}.

In this case we will usually write L(R) = L(S*) = L(S)*.

It is important to remember that a regular expression does not describe a string (even
for the atomic cases), but a language, that is, a set of strings.

4.2.3 Examples

We can describe the set of all valid floating point constants in Java (which you will all
study next semester) as a regular expression!'. We use some definitions to build up the
definition of the regular expression:

— e+~
0/1]2|3]4|5|6|7|8]9
D*

S(DN.N | .DN)

ESDN | e

ME

N E S 20w
I

'In fact we define a subset here, but the additional features are all easily definable as regular expressions
but do not add anything to this example.

28

Computation & Logic: Lecture 3 on Computation Informatics 1A (2004)

In this definition: S is an optional sign, D is the set of digits, N is a sequence of digits, M
is the mantissa, E the exponent and F is the regular expression representing a floating
point constant. For example, +12. 01E- 34 is a valid constant while - 12E+5 is not (why?).

In computer programs we often make use of variable names to refer to certain values
previously stored. Depending on the language, there are different constraints on the
names allowed for variables. Let’'s consider a language where names can be arbitrarily
long, contains letters and digits but must start with a letter. Thus anunil is a legal
variable name but lanumis not.

L = A|...2]a|...z
D = 0|1]2|3|4|5/6|7]8]9
I = L(L|D)*
Here I is the expression representing the identifiers of our programming language.

A less straightforward example is the regular expression for strings consisting of Os and
1s with an even number of 1s. After a little thought we arrive at (10*1 | 0*)*. This means
that we can have as many Os as we like, but whenever a 1 is encountered, it is eventually
followed by another 1.

4.2.4 Algebraic Laws

It is interesting to consider the question of simplifying regular expressions. There are
usually many regular expressions to represent the same language. Therefore it is helpful
to have some equations to capture basic properties of the operators of regular expres-
sions. We begin with choice:

LO|R) = L(R)=L(R|0 4.1)
L(R|R) = L(R) 4.2)
L(R|S) = L(R)UL(S)=L(S|R) 4.3)
L(R|S)|T) = L(R|(S|T)) (4.4)

These equations capture the idea that the choice operator is a way of representing set
union. Now we consider sequence:

L(eR) = L(R) = L(Re) (4.5)
L(OR) = L(O)L(R) = L(0) = L(RD) (4.6)
L((RS)T) = L(R(ST)) 4.7)

The first two of the sequence equations above depend on the definition of sequence, and
on the particular properties of) and e.

The remaining equations involve more than one operator:

L(R(S|T)) = L(R)L(S|T)= L(RS| RT) 4.8)
L(R[S)T) = L(R|S)L(T) = (L(R) U L(S))L(T) = L(RT | ST) (4.9)
LO) = L) = {e} = L(¢) (4.10)
L(RR*) = L(R)L(R") = L(R'R) (4.11)
L(RR* |e) = L(R") 4.12)
L((R|S5)") = L((R*S%)") (4.13)
L((RS)"R) = L(R(SR)") (4.14)

29

Computation & Logic: Lecture 3 on Computation Informatics 1A (2004)

Some of these equivalences are a bit more complicated than the earlier ones. It is pos-
sible to show the equivalences hold by using the definitions for L(R) given in Subsec-
tion 4.2.2. For each equation it is possible to check that the language defined on the left
includes that on the right and vice versa.

We will say that two regular expressions R and S are equivalent if and only if L(R) = L(S).
Sometimes we will be more careless and write R = S for equivalent regular expressions.

To show the applicability of these rules let us show that L(0(10)*1 | (01)*) = L((01)*).

L(0(10)*1 | (01)*) = L(01(01)* | (01)%)
= L(01(01)* | 01(01)* | ¢)
= L(01(01)* | ¢)

((01)")

B~

Can you work out which rules are used in each step?

4.3 Kleene's theorem (one half)

Our initial goal in introducing regular expressions was to have a shorthand for talking
about the languages accepted by Finite State Machines. We have now presented regular
expressions in some detail. Our final step is to relate the class of languages represented
by regular expressions to the class of languages accepted by Finite State Machines.

Theorem 4.1: (Kleene’s theorem) A language L is a regular language (that is, a lan-
guage accepted by some Finite State Machine), if and only if there is some regular expres-
sion R such that L(R) = L.

Notice that in the statement of this Theorem, it is not necessary to decide which type
of Finite State Machines we are talking about. That is because the class of languages
accepted by N-FSMs is the same as the class of languages accepted by D-FSMs.

There are two steps involved in proving Kleene’s theorem. It is necessary to show:

e For every regular expression R, it is possible to construct a Finite state Machine M
such that L(M) = L(R), and

e For every Finite State machine M, it is possible to construct a regular expression R
such that L(R) = L(M).

In Informatics 1, we will restrict ourselves to showing the first part of the proof. In fact,
you will see that we have done most of the work already. You will probably see the
second half of the proof next year.

Theorem 4.2: For every regular expression R, it is possible to construct a Finite state
Machine M such that L(M) = L(R).

Proof: We will prove Theorem 4.2 by induction on the number of operators (“sequence”, |
and *) of the regular expression.

For our base case, we will show that every regular expression which has 0 operators in it
(ie, is an atomic expression) can be represented by a Finite State Machine. This step is
relatively straightforward, because we know from section 4.2.1 that there are only three
types of atomic regular expressions, (), e and a.

30

Computation & Logic: Lecture 3 on Computation Informatics 1A (2004)

Finite State Machines to recognise L(()), L(e), and L(a) are given below in Figure 4.1.
Notice the important difference between the machine for L()) and for L(e).

a

—0 —0O O O

Figure 4.1: N-FSMs to recognise L(0)), L(¢), and L(a) (in that order).

For the inductive step, suppose that we have a regular expression R which has k + 1
operators, and that that we already know how to build an FSM to recognise the language
of any regular expression with at most k operators in it. We will see that this is enough
to allow us to construct an FSM to recognise L(R). Consider the operator at the top level
of R. Since R is not atomic, it has the form R = ST (then L(R) = L(S)L(T)), or R=S | T
(then L(R) = L(S) U L(T)), or R = S* (then L(R) = L(S)*). For each of these cases, both
S and T can have at most k£ operators. So we know that there exist FSMs to accept the
languages L(S) and L(T).

In the case of R = ST, we use the machines for L(S) and L(T'), and the construction
of 3.3, to obtain a machine to recognise L(R) = L(S)L(T). If R =S | T, then we use the
construction of Figure 3.4. If R = S*, then we use the construction of Figure 3.5. In all
cases we obtain a FSM to accept the language L(R), as required. O

4.4 Summary

The advantage of Kleene’s theorem is that in order to show that a language is a regular
language, we only need to write down a r.ex. for that language. Also the r.ex. can be
simplified, using the laws from Subsection 4.2.4.

4.5 Notes

The W ki pedi a link for regular expressions is very good, for the basics and also for
giving details about r.ex.’s in operating systems (eg Uni x):

http://en.w ki pedi a. or g/ wi ki / Regul ar expr essi ons
Change to schedule: On Thursday (Lecture 5) we will be covering the material originally

planned for Lecture 6 (in the “Plan of lectures” handed out at the beginning). This is the
“Limits of FSMs” lecture.

These notes have been adapted from two sets of earlier notes, the first due to Stuart Anderson,
Murray Cole and Paul Jackson, and the second due to Martin Grohe and Don Sannella.

Mary Cryan, November 2004

31

