Lecture 2

InflA: Deterministic Finite State
Machines

2.1 Introduction

In this lecture we will focus a little more on deterministic Finite State Machines. Also, we
will be mostly concerned with Finite State Machines which are acceptors (ie, have no out-
put alphabet) for this lecture. The idea is that we will explore deterministic FSMs in more
depth, giving formal definitions of things that were informally discussed in Lecture 1.

We will also discuss the binary representation of natural numbers in this lecture. All
modern digital computers store data such as natural numbers, floating point numbers,
and letters of the alphabet in binary representation: that is, in terms of sequences of Os
and 1s.

2.2 Formal Definitions

Before we launch into our formal definition of deterministic FSMs, it is useful to know a
bit about some of the words we will use throughout the definition.

An alphabet ¥ is just some set containing a finite number of distinct symbols. When we
talk about an alphabet, we are usually interested in strings over that alphabet. A string
over ¥ is simply a sequence of any number of symbols taken from ¥. We write £* to
represent the set of all strings over ¥. For example, if the alphabet is ¥ = {c,d}, then all
the following are elements of X*:

€,¢,d,cc,cd,dc,dd,ccc,ccd,cdc,...

In general ¥* contains strings of any length which are made up of cs and ds. Notice
that one of the strings is special. This is the e string, which is the empty string, which
contains no symbols from ¥. The empty string € is an important member of X* for any
alphabet 3.

For any alphabet ¥, a language over ¥* is a subset L of ¥* (a set L such that every string
in L belongs also to ¥*). For example, the set L. containing all strings made up of cs is
a language over {c,d}. The set L' = {c,ddc} is also a language over {c,d}.
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Here is the formal definition of an acceptor-type deterministic Finite State Machine.

Definition (Deterministic FSM)
A deterministic Finite State Machine (D-FSM) of the acceptor type is a machine M defined
as a 5-tuple

M = (Q,E,So,F, (S)

consisting of
1. a finite set Q of states
a finite alphabet %

a distinguished start state sy € Q

a set F C @ of accepting states, and

ok LN

a description of all the possible transitions of the FSM.

The usual formal definition given for deterministic FSMs states that the set of transi-
tions of the machine should be a function ¢ : Q) x ¥ — . We refer to this _function §
as the transition function of the machine M.

Notice that item 5. of the definition given above implies that at any state ¢ of a D-FSM,
we must have exactly one transition leaving ¢ for every different symbol a € ¥ (because
when we talk about a function with the domain @ x ¥, this means that §(¢,a) must be
defined for all possible values of ¢ € @ and a € ¥).

In practice we can be a little bit more flexible than that. Remember from Lecture 1 that
our goal in defining D-FSMs was to ensure that for every input string =z € £*, there is
at most one trace in M for z. We achieved this with a strict definition of the transitions
allowed. If z = ¢, then the fact that there are no e-transitions in a D-FSM implies that
there is exactly one trace for z (which is the trace sg). If z # € (it has at least one symbol),
there is exactly one list of states sg, ..., s; (Where s; is the start state) such that

80, T1,---,Tk,Sk

is a trace of M. This is because since § is a function, therefore for every state ¢ € Q
and every symbol a, there is exactly one transition leaving ¢ labelled with a (the state ¢’
given by ¢’ = (g, a)), and no e-transition leaving ¢q. Therefore at any state of the machine
reading any symbol, there is no “choice” (no non-determinism) for the next state - it is
given by 4. The trace above is given by s; = §(sg, Z1),-..,8k = (Sk—1, Tk—1)-

However, our transitions do not have to define a function on @ x ¥ in order to avoid
multiple traces - it is enough that for every ¢ € Q and every a € X, there is at most one
¢’ such that there is an transition from ¢ to ¢’ while reading the symbol a. Therefore we
will sometimes allow the transition function to be undefined for some elements of () x X.

Definition (Language accepted by a D-FSM)

Let M = (Q, %, s0, F,d) be a deterministic FSM of the acceptor. Then the language L(M)
accepted by M is the set of strings = € ¥.* such that

(i) there is a trace for x in M;

(i) the trace ends in an accepting state (a state from F).
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Observe that for any D-FSM whose set of transitions is a function, it is always the case
that (i) above holds (there is a trace for every string z € ¥*). Therefore for any z € ¥*, z is
rejected if and only if the last state in its trace is a non-accepting state (the last state is
not in F).

It would be nice if every D-FSM was a equivalent to a D-FSM which satisfied the strict
conditions of the Definition given above. We now show that this is indeed the case.

Let M be a deterministic FSM whose set of transitions is not strictly a function. Therefore
there may be some strings z € ¥* which are rejected (not accepted) by the machine
because there is no trace for the string - this means that at some point during the
computation of M on z, there is no transition leaving the current state which is labelled
with the “next” symbol of the input string. Now suppose we alter M by adding a new
state to ) - we will call this a sink state. The sink state will not be an accepting state.
Now for every state g and every symbol a such that there is no transition leaving ¢ labelled
with a, we add such a transition, using the sink state as the target state. Therefore, we
will direct all strings which have no trace in M to this new (non-accepting) sink state. We
also add a transition from the sink state to itself labelled with all of the symbols of the
alphabet ¥. This ensures that the transition function is complete on the extended state
set, and that once a string is sent to the sink state, it will stay there. Therefore every
string that had no trace in the machine M now has a trace in the extended FSM, and
most importantly, every such string is rejected by the new machine. So the language of
the new machine is identical to L(M).

2.3 Binary numbers and Unary numbers

Throughout your years in high school you are probably used to writing the natural
numbers as a sequence of digits from 0, 1,2,3,4,5,6,7,8,9. These digits are known as the
decimal digits. In the terminology of Section 2.2 we could say that the set of decimal
numbers is the set of strings over the alphabet ¥ = {0,1,2,3,4,5,6,7,8,9} (as long as we
identify the empty string e with the number 0). This is the language ¥*. In fact (better),
we could say that the set of decimal numbers is the set of strings over the alphabet
¥ ={0,1,2,3,4,5,6,7,8,9} whose leading digit is not 0.

In this section we will present two alternative systems for representing natural numbers:
(i) the binary numbers (which is the representation that digital computers use for natural
numbers), and (i) a more unusual (and much less compact) number system, which is
the unary number system.

2.3.1 Decimal numbers

For any natural number! n € N, we can represent n in the decimal system by some se-
quence of decimal digits dy_1 ... d1dy, where the digits dy, d1, ..., dx—1 € {0,1,2,3,4,5,6,7,8,9}
are chosen so that

k—1
n = Z 10°d; = do + 10d; + 10%dy + ...+ 10F 1.
1=0

'The natural numbers are just the counting numbers, that is: 0,1,2,3,4, ... and so on.
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The value k is just a variable to represent the length of the string. This representation is
the way you are used to seeing numbers written. Of course the representation is unique
(there is exactly one decimal representation for each natural number, unless you decide
to add some useless 0s after the final digit dx_;). We represent 0 by the empty string e (or
by 0).

As we know well, the leading digits are the digits which contribute most to the value
of n - we say that the digit d;_; (assuming it is non-zero) is the most-significant digit and
that dy is the least-significant digit.

2.3.2 Binary numbers

Suppose that we only are allowed to work with the binary alphabet {0,1}, and that we
need a way of representing natural numbers using strings over this alphabet (that is, we
have ¥ = {0, 1}, and we have to work with strings from ¥*).

We show that we can represent all natural numbers by binary strings. For every binary
string by_1...b1by, where by, by,...,b1 € {0,1} (and where k is just a variable to allow
us to talk about the length of the string), the number represented by by_;...b1by is the
natural number

k-1

no= Y 2b; = bg+2by+...+2" b1
=0

For every natural number n, the binary representation of that number is unique, if we
insist that there are no leading 0s. Again b, ; is the most significant digit (assuming it is
non-zero) and by is the least significant digit.

It is not difficult to come up with the binary representation of a natural number n - you
can find the binary number by successively dividing » by 2 and taking the remainders
(each is either 0 or 1) in reverse order as the basis of the binary representation. For
example, if we consider n = 53, then performing this procedure gives:

53 original number

26 dividing 53 by 2 gives div 26, rem 1
dividing 26 by 2 gives div 13, rem 0
dividing 13 by 2 gives div 6, rem 1
dividing 6 by 2 gives div 3, rem 0
dividing 3 by 2 gives div 1, rem 1
dividing 1 by 2 gives div 0, rem 1

—
w

Ol—=W o
= O|l—=O|+—

Then, reading the remainders off in reverse, the binary representation of 53 is 110101.
It is an interesting exercise to try to give a formal argument that this procedure always
constructs the correct binary representation of n.

Binary numbers play a central role in Computer Science, and it is fun to see how to
add, subtract, multiply and divide binary numbers (without converting into a decimal
representation). There is some information about this at the W ki pedi a link at the end
of these notes.
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2.3.3 Unary numbers

Finally, we mention a very inefficient representation of natural numbers. Suppose our
alphabet only contains one symbol, that is, ¥ = {1}. Suppose we want to represent the
natural numbers as strings over ¥*. In this case, we have the following representation:

_ € ifn=0
TV 1.1 ifn>1

where in the n > 1 case, we repeat 1 exactly n times.

2.4 Deterministic FSMs to recognise odd numbers

We will now consider the task of designing a deterministic FSM to recognise odd natural
numbers. We will construct three different FSMs - one for numbers in unary notation,
one for numbers in binary notation and finally, an FSM for numbers in decimal notation.

Odd numbers in unary

To construct the machine for odd unary numbers, remember that our input alphabet is
¥ = {1}. Consider what happens for the empty string e - this represents 0, which is not
odd. So the start state of our machine, labelled 1 below, will not be an accepting state.

Notice that whenever we read an extra 1 from the input string, we switch back and forth
between having seen an odd number of 1s and an even number of 1s. Therefore we really
only need to have two states for our machine. The second state, labelled 2, will represent
the state of having seen an odd number of 1s so far.

1

(W : @

Figure 2.1: Machine to recognise odd numbers in unary

It is a simple task, but worthwhile, to test the machine above on some short strings over
1*. Notice that the FSM in Figure 2.1 is deterministic, and has a complete transition
function.

Odd numbers in binary

In this case our input alphabet is ¥ = {0, 1}. In order to recognise odd numbers in binary,
we need to make a decision about the order in which the binary number is input to the
FSM. We will require that the binary string is presented in the order of least-significant bit
first. Now think about the binary representation described in Section 2.3. The natural
number represented by the binary string by, 1 ...by is n = by + 2b; + ...+ 2571b, ;. Notice
that every term in this summation is multiplied by 2 (and greater powers of 2) except for
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the least significant bit by. Therefore the natural number n is odd if and only if the least
significant bit is equal to 1 - if we see that the least significant bit is 1, then we do not
need to check anything else.

Here is our first attempt at doing the FSM. Notice that the start state is not an accepting
state. We have a second state, labelled 2, which is accepting. We draw the transitions in
such a way so that we only transition to this accepting state if the first bit read from the
input string (the least significant bit) is 1.

0,1

e@ - (2)

Figure 2.2: Machine to recognise odd numbers in binary

It is a good exercise to test the strings 101001 (the number 41) and 1000 (the number 8§)
on the machine in Figure 2.2. The testing phase is always useful for debugging FSMs.

Notice that the machine in Figure 2.2 is deterministic. There are no e-transitions, and
all transitions leaving the same state are labelled with different symbols (or bits, in this
case).

Suppose we draw a @) x X table to represent the transitions of the FSM in Figure 2.2:

0 1
state 1 - state 2
state 2 | state 2 | state 2

Notice from this table that the set of transitions for our D-FSM of Figure 2.2 is not
complete. It is not a _function on @ x ¥. However, using the sink state construction from
the end of Section 2.2, we can construct an equivalent D-FSM with a transition function
to recognise odd numbers in binary. This new D-FSM is shown in Figure 2.3. The sink
state is the state 3.

0,1

1 - (2)

0,1
Figure 2.3: Machine 2 to recognise odd numbers in binary

The machine in Figure 2.3 accepts exactly the same language as the machine of Fig-
ure 2.2, which is the language of binary strings with a 1 in the least-significant position.
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2.4.1 Odd numbers in decimal

Here is a machine to recognise odd numbers in decimal. It is a good idea to test it out,
and to draw the transition-table.

0,1,2, ....,9

1,3,5,7,9
@

0,1,2, ....,9

Figure 2.4: Machine to recognise odd numbers in decimal

2.5 Finite State Machines in Haskell

We will now see how we can implement some of our little Finite State Machines from
Section 2.4 in Haskell. The first thing to say is that in general the problems that we have
been modelling with Finite State Machines are much simpler than the computational
tasks which you have been solving in the FP part of this course. However, one of the
ways of implementing Finite State Machines involves using mutual recursion, which is
an interesting concept in Functional programming.

Consider our first FSM for recognising odd numbers in unary notation. This machine
has two states - the start state, named 1, indicates that the part of the string read so
far consists of an even number of 1s, and the other state, named 2, indicates that the
part of the string read so far consists of an odd number of 1s. We define two mutually
recursive functions “oddUn” and “evenUn” to represent our two states.

Typing in oddUn with a string of 1s returns True if the string consists of an odd number
of 1s and False if the string consists of an even number of 1s.

It is a nice exercise to define an appropriate data type to ensure that the only lists passed
to oddUn are lists of 1s.

odduUn :: [a] -> Bool
evenUn :: [a] -> Bool

oddUn [] = Fal se
oddUn (x:xs) = evenUn xs

evenUn [] = True
evenUn (x:xs) = oddUn xs
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2.6 Summary

In this lecture note we have

e Given a formal definition of a deterministic FSM and of the language accepted by a
deterministic FSM.

e Given an introduction to binary representation for natural numbers as well as unary
notation.

e Given deterministic Finite State Machines to recognise odd natural numbers rep-
resented in (i) unary notation; (ii) binary notation; (iii) and decimal notation.

e Discussed the issue of whether the set of transitions of a D-FSM form a complete
transition function on Q x . Shown that we can ensure that a deterministic ma-
chine has its transitions described by a transition function by simply adding one
sink state to the machine.

e Discussed the issue of testing FSMs for correctness.

2.7 Extra work

We didn’t cover binary numbers in much depth (just enough to suit our purposes for the
examples of Finite State Machines given above). Wikipedia has a very useful page on the
Binary number system. It is located at:

http://en.w ki pedi a. org/ w ki / Bi nary numer al system
Draw the transition table for the D-FSM for accepting odd numbers in decimal notation.

Also write a set of three mutually recursive Haskell functions to implement the ma-
chine of Figure 2.3, and another set of Haskell functions to represent the machine of
Figure 2.4.

These notes have been adapted from two sets of earlier notes, the first due to Stuart
Anderson, Murray Cole and Paul Jackson, and the second due to Martin Grohe and Don
Sannella.

Mary Cryan, November 2004
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