
Lecture 1

Inf1A: Introduction to Finite State
Machines

1.1 Models of Computation

Most of us we think of computers as laptops, PCs and perhaps Cray supercomputers. In
fact there are many more small computing devices in operation all around us: Microwave
clocks, iPods, Cash Registers are all examples of machines which are doing computa-
tional processing. Each of these devices can be thought of as a reactive system - that is
because each of them work by reacting to signals or inputs from the external world.

Throughout Informatics 1 and the later years of your course (CS, AI, ...) you will learn
about many specific types of “reactive systems” which have applications in the real world.
You will learn different programming languages, which are used to construct software to
perform specific tasks. You will also learn about special application areas and the type
of challenges posed in constructing systems for those application areas.

Also throughout Informatics 1 and later years, you will learn the importance of being
able to model the behaviour of natural computational systems (in application areas such
as human speech), as well as artificial systems.

In studying such a wide range of systems, it is very useful to have some simple models of
computation which abstract away from the untidy details of programming or of “real life”.
This allows us to focus on the computational power of a particular model of computation
- what it is possible to compute in the model of computation. It also allows us to focus
on the representational power of a particular model of computation.

Therefore in this section of Informatics 1, we are going to focus on a class of very simple
abstract reactive systems. We will consider Finite State Machines (FSMs), which are also
called Finite State Automata in some textbooks. This particular model of computation is
usually the first abstract model of computation to be studied in most Computer Science
and Artificial Intelligence undergraduate courses, because it is so simple. In fact, the
particular machines which we will construct as examples throughout this class will
seem to be much “easier” than the programs that you have been implementing in the
Functional Programming strand of Informatics 1A. However, the reason we are going to
consider this simple model of computation (in which many of the typical examples are
also very simple) is because we want to study Finite State Machines in detail. In order
to be able to make general statements about our model of computation, it makes sense

1



Computation & Logic: Lecture 1 on Computation Informatics 1A (2004)

to start by considering a restrictive model.

In fact, even though the Finite State Machine model is very simple, it is still the basis
for a lot of design activity across a range of application areas in hardware and software
engineering. It is also the basis for a lot of work in pattern matching (such as the pattern
matching which is performed by Google in searching documents for keywords) and for
research into computer applications for speech and language processing.

1.2 The main idea

The main observation to make about reactive systems is that the response to a particular
stimulus (a signal, or a piece of input) is not the same on every occasion. For example, in
the case of a parking ticket machine, it will not print a ticket when you press the button
unless you have already inserted some money. Thus the response to the print button
depends on the previous history of the use of the system.

The Finite State Machine model restricts the number of different responses to a partic-
ular stimulus to be finite and to be fixed by the description of the machine. This is the
big difference between the Finite State Machine model and other models of computation.
Basically, in the Finite State Machine model, we can only construct machines which
have a finite number of different states. The only effect that a stimulus can have is to
(possibly1) generate a response from the machine and change state to some new state.

In the design of a Finite State Machine for a particular problem, it is usually the case
that the input to the FSM will consist of an entire sequence of stimuli, rather than a
single stimulus. We will usually use the terminology of an alphabet

�
, whose symbols

correspond to particular stimuli that may be sent to the machine. Then our inputs
will consist of a sequence of symbols from this alphabet, where the sequence is usually
referred to as a string over the alphabet

�
.

The fact that we only are allowed to have a fixed number of states limits what we can
compute (or model) with an FSM. When we read a new element of our input string
and move to a new state, we expect the new state to reflect what we want (or need)
to remember about the past inputs. Therefore, because we only have a fixed number
of states, we are restricted to remembering a fixed finite amount about what has gone
before. We will see later in Lecture 6 there are many simple counting tasks that do not
fit within this model.

1.3 Details

In this section we describe the details of the finite-state machine definition. We first talk
about how to describe finite-state machines, and then show how this description relates
to the behaviour of the machine. We then go on to discuss some further technicalities of
the definition.

We describe a FSM by providing the following descriptions:

1. A description of the stimuli that the machine will take into account. This is defined
by giving a finite input alphabet consisting of a set of different symbols. The input

1Only the transducer type of Finite State Machine generates outputs. Most, though not all, of the ma-
chines we consider in this course will be acceptors, which do not generate responses.

2



Computation & Logic: Lecture 1 on Computation Informatics 1A (2004)

alphabet is usually called
�

(pronounced sigma).

As an example, suppose the system (or computational process) which we are mod-
elling has two pushbuttons, one labelled a, and the other b. Suppose that inputs
to the system are given by pressing one or other of the buttons in turn. In this case
we would probably define

�����
a � b � to be our alphabet for our FSM (for modelling

this system). We can also can think of the input to our FSM as a single stream of
letters that can either be a or b (that is, a string over the alphabet

�
).

2. A description of the responses that the machine can generate. This is defined by
giving a finite output alphabet. Most of the FSMs that we will give as examples will
not have any output alphabet (they will not give any outputs). However, sometimes
an output alphabet will be important, especially when we are using FSMs as a
design tool for large systems (Lecture 5).

The output alphabet is usually called � (pronounced lambda). For example, if the
output alphabet for an FSM was � ��� p � q � we could imagine that the system has
two lights on it (one labelled p, the other labelled q) and that system can turn
them on and off independently, in response to given inputs, and depending on the
current state of the system. Alternatively, we can think of the machine as having a
single output stream that consists of a sequence of ps and qs.

3. We describe the machine as a diagram consisting of circles that stand for distinct
states in the machine. When we consider FSMs that are acceptors, states with
double circles will have a special interpretation .

When we come to write down a formal description of FSMs, each of the distinct
states will have a distinct name. We usually use � to denote the set of all states of
the FSM.

4. There is often a fixed start state which is thought of as being the initial state of
the Finite State Machine (before any input has been read). This state may have
different names, depending on the particular system being modelled.

Diagrammatically, the state state is indicated by an arrow which points to the start
state, but which is not connected to any other state.

5. The computational behaviour of the machine is described in terms of transitions,
which are arrows leading from one state to another.

When we consider FSMs which are transducers (which produce outputs), then each
transition is labelled by some pair of symbols a/b where a is drawn from

�
and b

is drawn from � . Suppose we have such an arrow from state 	 to state 	�
 . The idea
is that if the machine is in state 	 and it receives the input a, then the machine
generates output b and changes its state to state 	�
 .
When we consider FSMs which are acceptors, then each transition is labelled only
with a symbol from

�
, since there are no outputs.

On some occasions (see Lecture 3 onwards) we will want to be able to take a tran-
sition when we have no input. In these cases we can replace the letters on the
transition by the symbol 
 (pronounced ep-sil-on) indicating that no symbol is being
read from the input. Sometimes we omit 
 s in diagrams since we can always clearly
see where we would have used an 
 .

3



Computation & Logic: Lecture 1 on Computation Informatics 1A (2004)

Here is a very simple example of a parking ticket machine. The input alphabet is
� �

�
m � t � r � standing for: inserting money, requesting a ticket, and requesting a refund.

The output alphabet is � � � p � d � standing for: print ticket, and deliver refund. The
transitions and start state of the machine are shown here.

m/

t/p

r/d

m/

t/
r/

21

Figure 1.1: Parking meter FSM

The idea here is that the machine responds differently to a ticket request depending on
whether any money has been deposited by the user of the system. If the user presses
the button without inserting money then no ticket is printed. If money has been inserted
then a ticket will be printed and the state changes back to the start state. So, the states
capture the situation where no money has been inserted since the last ticket was printed
and the situation where money has been inserted since the last ticket was printed.

Notice that the machine in Figure 1.1 is a transducer, because it produces outputs (not
on all transitions, but on some of them).

1.3.1 Behaviour

In this section we investigate the type of behaviour a particular machine can exhibit. We
do this by defining a trace of a finite-state machine. A trace for a Finite State Machine�

is defined to be:

1. A finite sequence of alternating states and transition labels starting and ending
with a state: ��� �����
	���� �
��� �������
������� ������	���� �
��� .

2. The first state, ��� , is the start state of
�

.

3. For every triple ������� ������	���� �
��� of the form (state, pair of input/output symbols, state)
appearing in the sequence, there must be a transition in

�
from state ������� to �
�

labelled ����	���� .

For example, one trace of the parking meter machine is: � � m/ �
��� m/ �
��� m/ �
��� r/d ��� . This is
the behaviour where the user deposits three coins and then decides to ask for a refund.
The following is not a trace: � � m/ ��� � m/ �
��� m/ �
��� r/d ��� because the very first transition is
not in the parking meter machine description (if it was and we kept the interpretation of
the states then this would mean the machine could forget about money that had been
deposited after the last ticket was printed). If we take a trace of a machine and drop
the states from the trace then we get a possible sequence of stimulus/response pairs
that could be generated by the machine. The overall behaviour of the machine is the
collection of all traces that the machine could exhibit (notice that even for the parking
machine this is an infinite set).

4



Computation & Logic: Lecture 1 on Computation Informatics 1A (2004)

1.3.2 Transducers and Acceptors

When we are interested in the theoretical study of computation, we need to be quite
precise about the type of behaviour we are interested in studying for FSMs. In the
standard literature on Finite State Machines there are two main types of Finite State
Machines, transducers and acceptors.

An FSM which is an acceptor can be thought of as defining a subset of the set of all
sequences of the input alphabet

�
. For the class of FSMs which are acceptors, the

output alphabet � is always empty, and therefore the transitions of the FSM are labelled
with only one symbol (the input symbol which is read by that transition). The definition
of a trace as the same as before except that the trace now looks like ��� ����� �
��� �������
������� ����� �
��� .
When a FSM is an acceptor, we have an extra definition to make - the extension is to
mark some states as being accepting states. Formally, this is done by defining the set �
of accepting states (usually just by listing which states are accepting). In diagrams,
accepting states are represented by double circles.

1

0 0

1

10

1,0

BA C

D

Figure 1.2: An acceptor

The FSM in figure 1.2 accepts sequences of 0s and 1s in which the number of 0s never
exceeds the number of 1s by more than one and vice versa. In this case the sequence
0101101 is accepted because the trace corresponding to it has an accepting state (C) as
its final state. The trace corresponding to this sequence is:

� � 0 ��� � 1 � � � 0 ��� � 1 � � � 1 ��� � 0 � � � 1 ���
By contrast, the sequence 0101001 is not accepted by the FSM because the trace corre-
sponding to it is: � � 0 ��� � 1 � � � 0 ��� � 1 � � � 0 ��� � 0 ��� � 1 ���
and � is not an accepting state. Failure to accept a sequence can arise in two ways:

� We are able to construct a trace corresponding to the sequence but the final state
in the trace is not an accepting trace.

� We cannot construct a trace for the given sequence. For example, if we omit state
D in the above acceptor then it would be impossible to construct a trace for the
sequence 0101001.

5



Computation & Logic: Lecture 1 on Computation Informatics 1A (2004)

The second case above only happens when the set of transitions is incomplete. That is,
case two only happens if there is some (state, symbol) pair � 	������ for 	�� � ����� �

such that
no transition leaving 	 is labelled by � . We will discuss this further in Lecture 2.

For a given FSM
�

we say that the language accepted by
�

is the set of strings over the
alphabet

�
that are accepted by

�
.

1.3.3 Deterministic Machines

In this discussion we just consider acceptors, but most of what we say here carries over
to transducers (in some circumstances things can be a bit more delicate).

Nothing we have said so far implies that any two transitions originating at the same state
must be labelled with different inputs. Neither have we implied that if there is a state 	
with an 
 -transition leaving that state, then it is the case that that transition must be
followed (without reading any input symbol). What this means is that when we have
“competing transitions” (transitions labelled with the same inputs, or with 
 -transitions)
leaving the same state, there may be more than one trace corresponding to a particular
sequence of inputs.

Finite State Machines of the kind described above are the most general types of Finite
State Machines (ignoring the fact that we consider acceptors rather than transducers).

For any FSM
�

with an input alphabet
�

, we say that an input sequence from
���

is
accepted if at least one trace for the sequences ends in an accepting state. In some cir-
cumstances we would like to know that there is at most one trace for any input sequence.
If this is so then the FSM is called deterministic. Machines which are not deterministic
are called non-deterministic.

In later years of your studies you will see there is a method for converting any non-
deterministic acceptor to a deterministic acceptor. However, this may result in an expo-
nential increase in the number of states.2

1.4 Summary

In this lecture note we have:

� Considered reactive systems.

� Given a fairly informal definition of Finite State Machines.

� Studied how the description of an FSM defines the behaviour of the FSM.

� Seen how FSMs can be considered to be acceptors or transducers.

� Considered the distinction between deterministic and non-deterministic FSMs.

These notes have been adapted from two sets of earlier notes, the first by Stuart Anderson,
Murray Cole and Paul Jackson, and the second by Martin Grohe and Don Sannella.

Mary Cryan, October 2004

2This means if the non-deterministic machine has � states, the equivalent deterministic FSM may have
as many as 	�
 states. This is not always the case but it can happen.

6


