
Informatics 1A Computation and Logic
Guide to Standard Answers (and Marking Scheme)

Total marks for the assignment is 40. Points for each question are indi-
cated after the solution is given.

1. An appropriate truth table is:

a b not(a) not(b) a→ b a→ b and not(b) (a→ b and not(b))→ not(a)
t t f f t f t
t f f t f f t
f t t f t f t
f f t t t t t

so the expression is a tautology.

(Marks: 2)

2. (a) An appropriate proof is:

[b c] (a or b) (a or c)

[(a or b), b c] (a or c)

(a or b) [(a or b), b c]

[a, (a or b), b c] (a or c)

[b, (a or b), b c] (a or c)

[a, (a or b), b c] a

a [a, (a or b), b c]
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immediate

immediate

b [b, (a or b), b c]

(b) We are missing the counterpart, for conjunction, of the and elim
proof rule. In other words, we need a rule that can “unpack”
conjunctive expressions in our set of axioms.
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(c) A sound proof system permits no invalid proofs. A complete
proof system permits all valid proofs.

(Marks: 6 - (a)4, (b)1, (c)1)

3. (a) Representing each circuit as a propositional expression gives:

• Circuit 1: not((not(a) or b) and not(b)) or not(a)
• Circuit 2: not(not(a and not(b)) and not(b)) or not(a)

(b) The truth table for both circuits is then as below:
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Circuit 1 Circuit 2

(c) The two expressions are equivalent. Both expressions are tautol-
ogous - they give the output “true” regardless of the inputs. So
the engineer was right on both counts.

(Marks: 7 - (a)2, (b)4 (2 per truth table), (c)1)

4. Apply the equivalences in the following order:
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Start with ((p and q)→ r) and (p→ q)
(p and q)→ r is equivalent to not(p and q) or r

giving the formula
(not(p and q) or r) and (p→ q)

then
p→ q is equivalent to not(p) or q

giving the formula
(not(p and q) or r) and (not(p) or q)

then
not(p and q) is equivalent to not(p) or not(q)

giving the formula
(not(p) or not(q) or r) and (not(p) or q)

Other orders of application are permitted as long as they are applied
correctly and the result is correct.

(Marks: 3 - 1 for each step)

5. The steps of inference are:

• First negate b to give not(b)

• Add this to the set to give [ [a], [not(a), b] [not(b)] ]

• Resolve [not(b)] with [not(a), b] to give [not(a)]

• Resolve [not(a)] with [a] to give []

• [] means we have a contradiction so not(b) is false

• So b is true.

(Marks: 4 - 1 for first two steps, 1 each for next two steps, and 1 for
last two)

6. (a) An appropriate FSM is as follows:
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(b) This FSM can’t be built because the base sequences can be of
arbitrary length but are required to be maintained with equal
numbers of the character “a”. To enforce this constraint we would
need some means of counting.

(Marks: 5 - (a)4 - 1pt for each part of gene (catbox, base, tatabox)
and 1 for composition, (b)1)

7. (a) A basic set of appropriate states might be:
W dave is waiting for a call
P Dave has found out who the caller requests
N The requested person is not at home
A The requested person is at home
T Someone is talking to the caller
G Dave has said goodbye

(b) An example of the right sort of machine is as follows:
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(c) It is deterministic if every arc leaving a state leads to a unique
successor state. The answer should show whether or not this is
true for the machine given.

(Marks: 4 - (a)1, (b)2, (c)1)

8. The basic method given in the lectures is this:

• First find all traces through the FSM that would accept the target
string, noting the probability on each transition. For the example,
there are two accepting traces for aabb:

1 a(0.6) 1 a(0.4) 2 b(0.5) 2 b(0.5) 3
1 a(0.6) 1 a(0.6) 1 b(0.2) 1 b(0.8) 3

• Then take the product of the probabilities on each trace:

0.6 * 0.4 * 0.5 * 0.5 = 0.06
0.6 * 0.6 * 0.2 * 0.8 = 0.0576

• Then take the sum of the probabilities per trace: .6 + 0.576 =
0.1176*

Variants on this calculation are acceptable as long as they make sense
as calculations of probability. Students do not have to do the arith-
metic - the equations suffice.

(Marks: 5 - 2 for traces, 2 for ‘and’ eqs, 1 for ‘or’ eq)

9. (Marks: 4 - 2 for each sub-question)
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