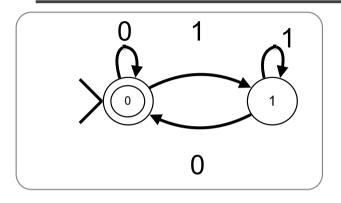
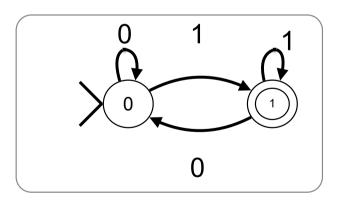


The complement of a DFA regular language is DFA regular

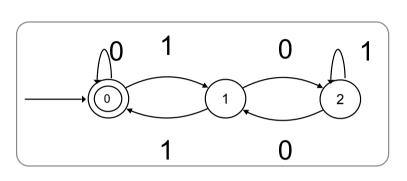


 L_0 : even numbers = 0 mod 2

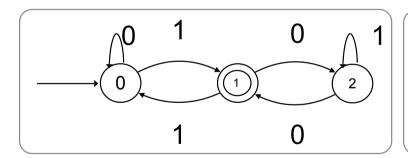


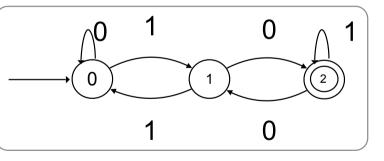
 L_1 : odd numbers = 1 mod 2

Three examples

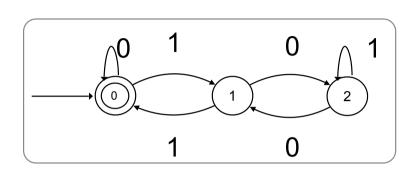


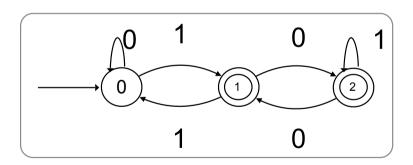
Which			
-		×2	×2 ·
binary	mod 3	0	1
numbers	0	0	1
are	1	2	С
accepted?	2	1	2



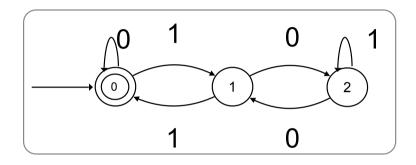


The complement of a DFA regular language is DFA regular

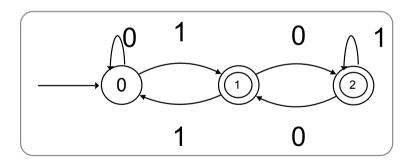




If $A \subseteq \Sigma^*$ is recognised by M then $\overline{\mathbf{A}} = \Sigma^* \setminus \mathbf{A}$ is recognised by where $\overline{\mathbf{M}}$ and \mathbf{M} are identical except that the accepting states of $\overline{\mathbf{M}}$ are the nonaccepting states of M and vice-versa

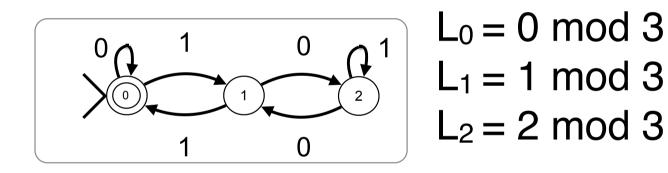


divisible by three

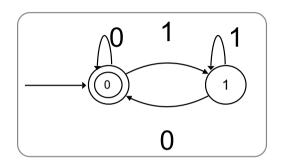


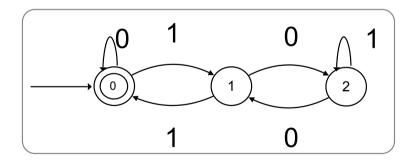
not divisible by three

The intersection of two DFA regular languages is DFA regular



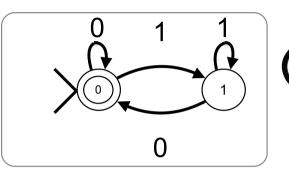
The intersection of two DFA regular languages is DFA regular





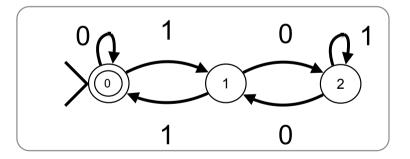
divisible by 6 ≡ divisible by 2 and divisible by 3

The intersection of two DFA-regular languages is DFA-regular



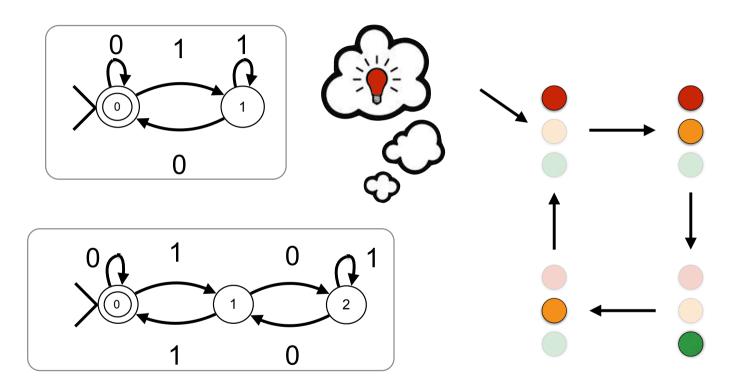
Run both machines in parallel?

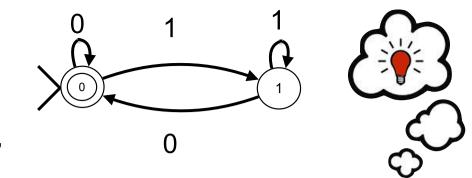
Build one machine that simulates two machines running in parallel!



Keep track of the state of each machine.

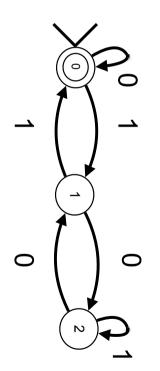
The intersection of two DFA-regular languages is DFA-regular

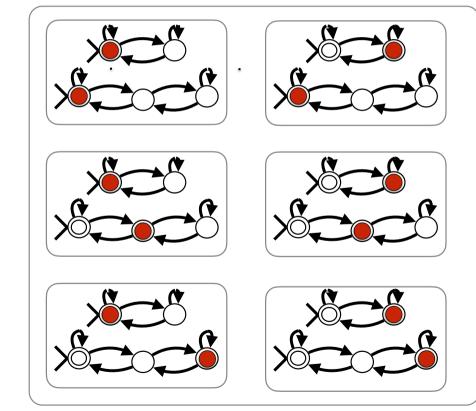


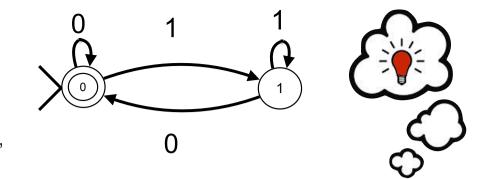


intersection of languages

run the two machines in parallel when a string is in both languages, both are in an accepting state





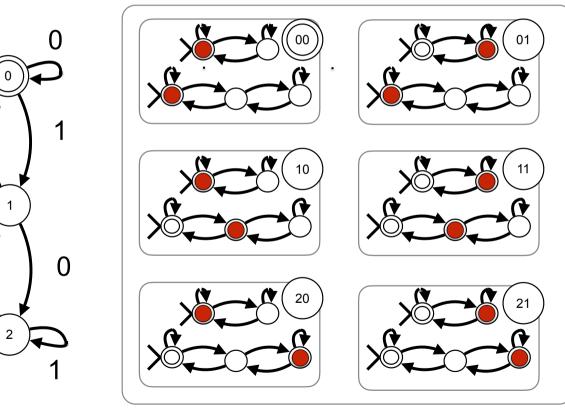


intersection of languages

run the two machines in parallel when a string is in both languages, both are in an accepting state

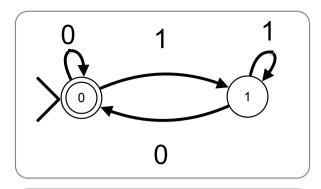
1

0



intersection of two regular languages is regular

0



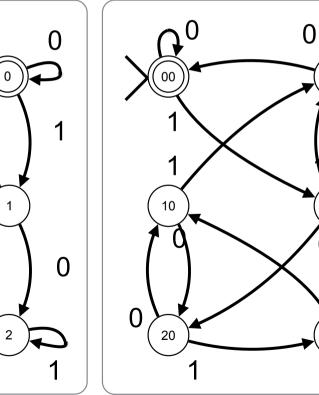
01

11

0

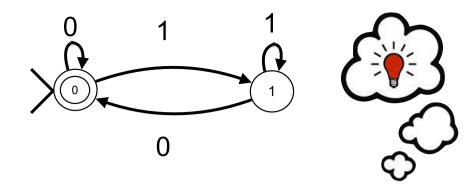
21

run two machines in synchrony

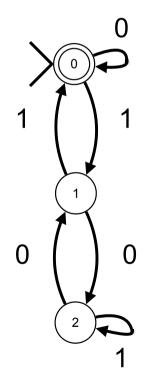


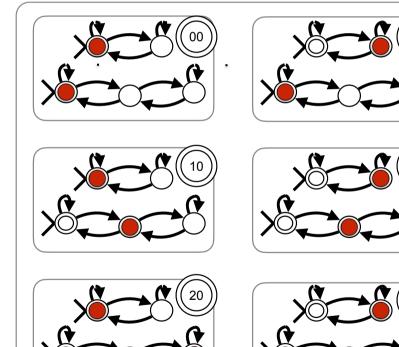
union of languages

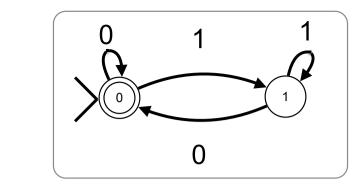
run the two machines in parallel when a string is in the union of the two languages, either or both are in an accepting state



21





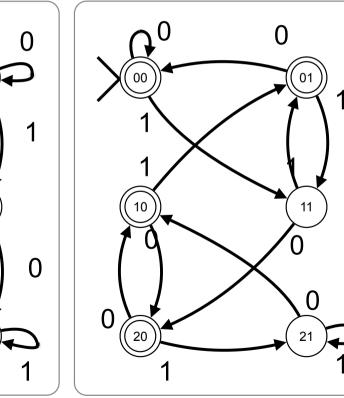


union of two regular languages is regular

0

2

run two machines in synchrony



The DFA-regular languages A $\subseteq \Sigma^*$ form a Boolean Algebra

• Since they are closed under intersection and complement.

The DFA-regular languages A ⊆ Σ* form a Boolean Algebra

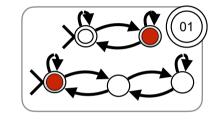
Are the DFA-regular languages closed under concatenation R S and iteration ()* ?, we define non-deterministic NFA — FSM with ε-transitions and show that:

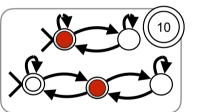
for each regex p there is an NFA that accepts exactly the strings matching p

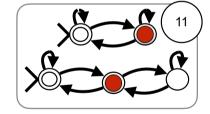
every NFA is equivalent to some FSM

every FSM is equivalent to some DFA

FSM model non-deterministic machines

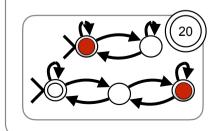


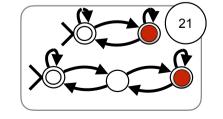


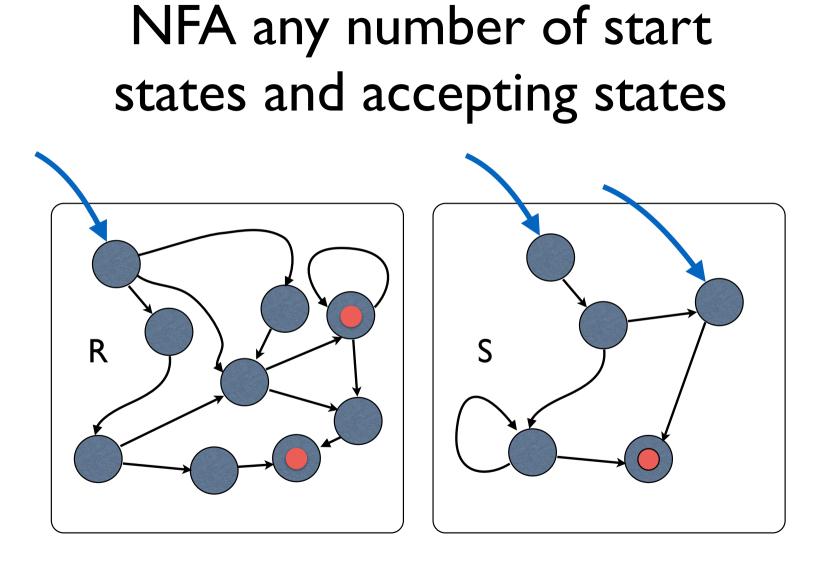


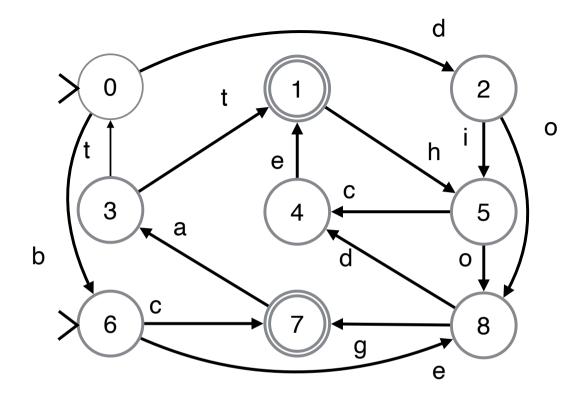
multiple threads of computation running in parallel

multiple start states

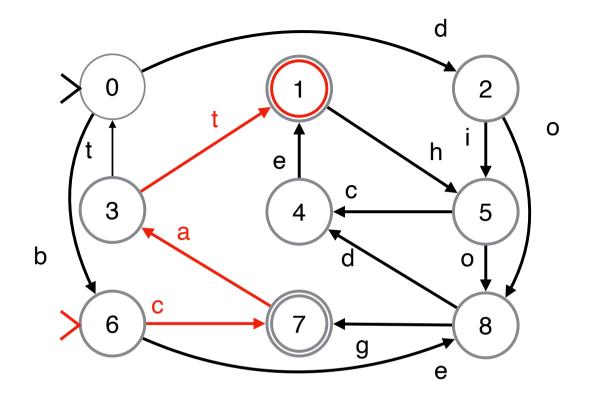




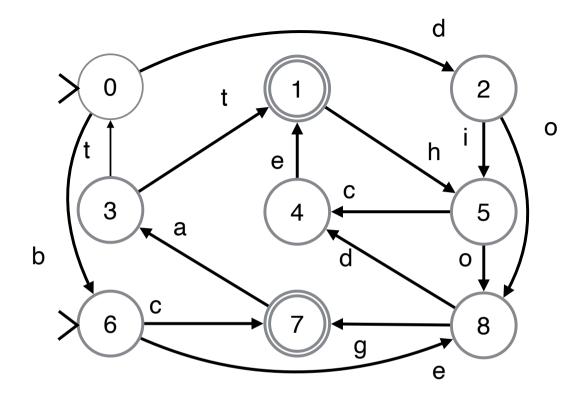




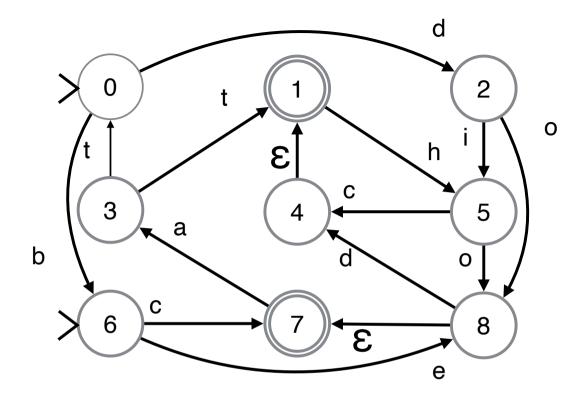
An FSM accepts a word iff there is a trace from some start state q₀ to some finish state q_n along transitions that spell out the word



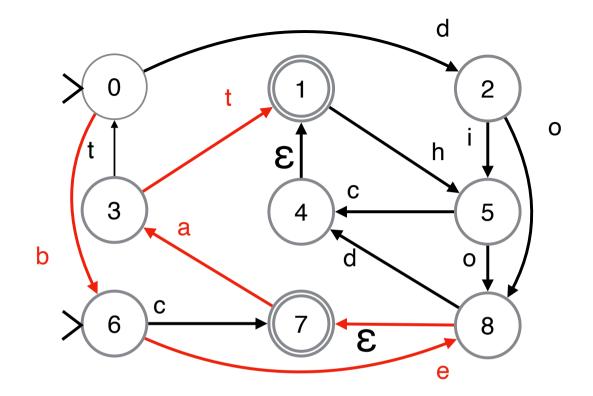
An FSM accepts a word iff there is a trace from some start state q₀ to some finish state q_n along transitions that spell out the word



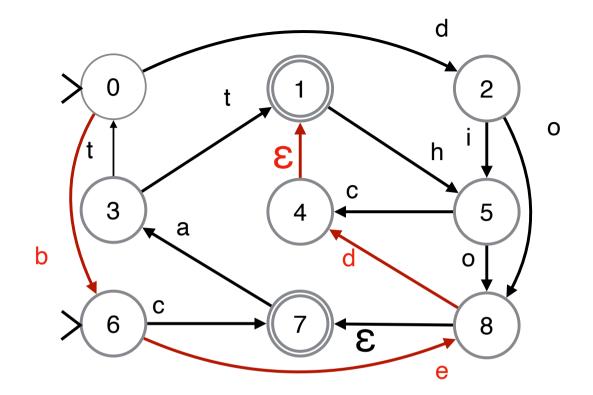
An FSM accepts a **string** iff there is a trace from some start state q₀ to some finish state q_n along transitions that spell out the **string**



An ε-FSM accepts a string iff there is a trace from some start state q₀ to some finish state q_n whose non-ε transitions spell out the string



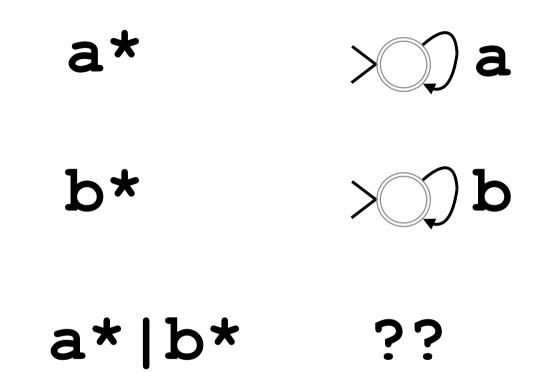
An ε-FSM accepts a string iff there is a trace from some start state q₀ to some finish state q_n whose non-ε transitions spell out the string



An ε-FSM accepts a string iff there is a trace from some start state q₀ to some finish state q_n whose non-ε transitions spell out the string If $R \subseteq (\Sigma \cup \{\epsilon\})^*$ is a regular language with the alphabet $\Sigma \cup \{\epsilon\}$ (where $\epsilon \notin \Sigma$) then $R // \epsilon = \{ s // \epsilon | s \in R \}$ is regular where $s // \epsilon$ is the result of removing every ϵ from s

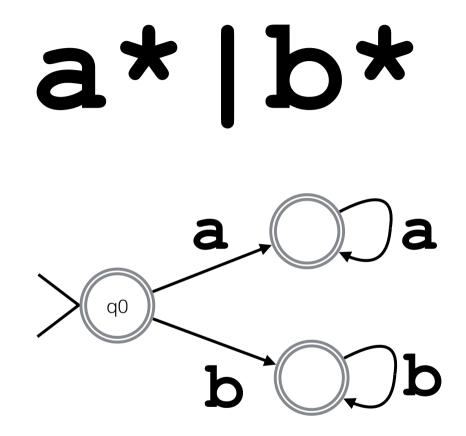
> often 'explained' as ε stands for the empty string

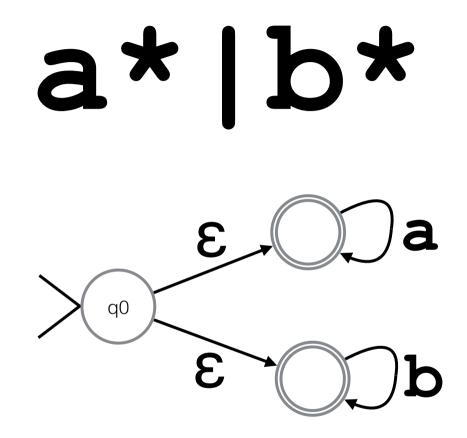
today we will use this theorem tomorrow we will prove it



(a|b)* >) a,b

a*|b* ??

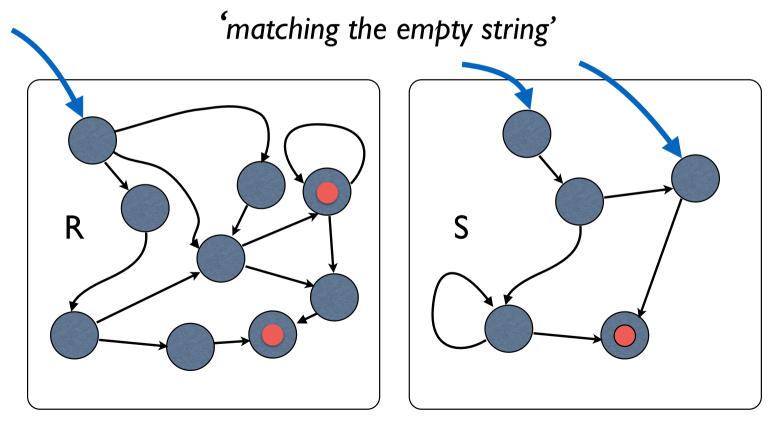


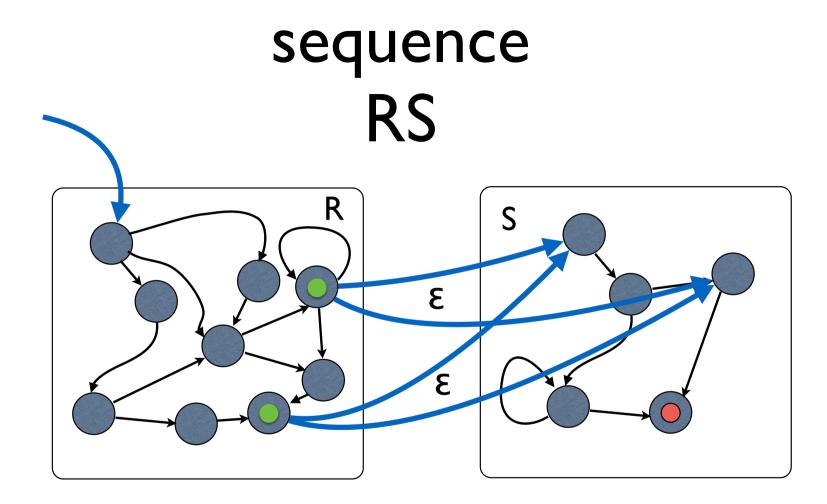


ϵ -NFA

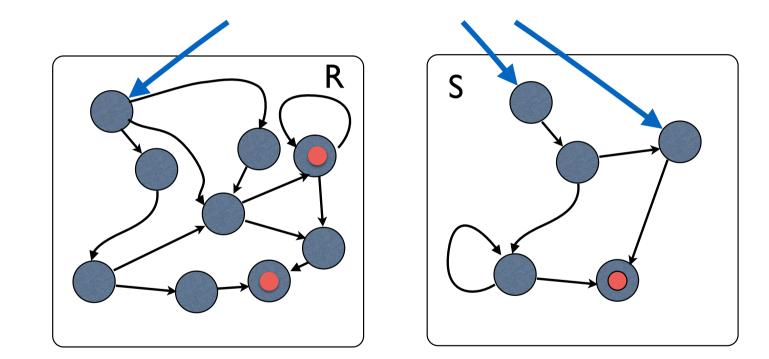
any number of start and finish states

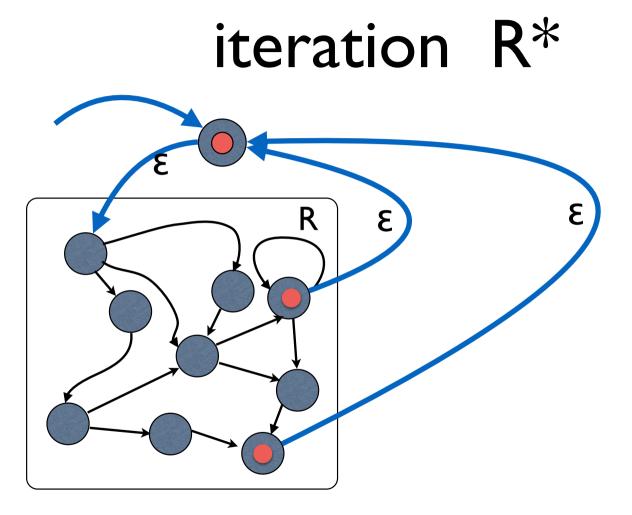
E - transitions 'hidden actions'





alternation R|S





regular expressions

each regex is a pattern that matches a set of strings

- any character is a regex
 - matches itself
- if R and S are regex, so is RS
 - matches a match for **R** followed by a match for **S**
- if **R** and **s** are regex, so is **R**|**s**
 - matches any match for **R** or **S** (or both)
- if **R** is a regex, so is **R***

matches any sequence of 0 or more matches for R

- The algebra of regular expressions also includes elements 0 and 1
 - 0 = \emptyset matches nothing; 1 = Σ * matches everything
 - $\varepsilon = \emptyset \star$ matches the empty string

 $0|R = R|0 = R \qquad 1|R = R|1 = 1$ $0R = R0 = 0 \qquad \epsilon R = R\epsilon = R$ $\epsilon = 0* \qquad A* = \epsilon |AA* = \epsilon |A*A$

the language of strings that match a regex, R, is recognised by some ϵ -FSM

Stephen Cole Kleene 1909-1994

Kleene *

regular language = recognised by some FSM

DFA regular languages — closed under Boolean operation

ε-FSM-regular languages — closed under regex operations

regex languages — strings matching some regex

$FSM \ DFA \ \epsilon\text{-}FSM$ all recognise the same languages

every regular language is defined by some regex

regex languages are closed under Boolean operations