NFA and regex

- ε-transitions
- regular expressions

Two examples

Input sequence is accepted if it ends with a zero.

Input sequence is accepted if it ends with a one.

The complement of a DFA regular language is DFA regular

Lo: even numbers $=0 \bmod 2$

L_{1} : odd numbers

$=1 \bmod 2$

Three examples
Which

Which binary numbers are accepted?

	$\times 2$	$\times 2+1$
$\bmod 3$	0	1
0	0	1
1	2	0
2	1	2

The complement of a DFA regular language is DFA regular

If $A \subseteq \Sigma^{*}$ is recognised by M then $\overline{\mathrm{A}}=\Sigma^{\star} \backslash \mathrm{A}$ is recognised by \bar{M} where \bar{M} and M are identical except that the accepting states of \bar{M} are the nonaccepting states of M and vice-versa

By three or not by three?

divisible by three

not
divisible by three

The intersection of two DFA regular languages is DFA regular

$\mathrm{L}_{0}=0 \bmod 3$
$L_{1}=1 \bmod 3$
$\mathrm{L}_{2}=2 \bmod 3$

The intersection of two DFA regular languages is DFA regular

divisible by 6
divisible by 2 and
divisible by 3

The intersection of two DFA-regular languages is DFA-regular

Run both machines in parallel?

Build one machine that simulates two machines running in parallel!

Keep track of the state of each machine.

The intersection of two DFA-regular languages is DFA-regular

intersection of languages
run the two machines in parallel when a string is in both languages, both are in an accepting state

1

12
intersection of two regular languages is regular

union of languages
run the two machines in parallel when a string is in the union of the two languages, either or both are in an accepting state

14

union of two regular languages is regular

The DFA-regular languages $A \subseteq \Sigma^{\star}$ form a Boolean Algebra

- Since they are closed under intersection and complement.

The DFA-regular languages $A \subseteq \Sigma^{\star}$ form a Boolean Algebra

Are the DFA-regular languages closed under concatenation R S and iteration ()* ?, we define non-deterministic NFA

- FSM with ε-transitions and show that:
for each regex p there is an NFA that accepts exactly the strings matching p every NFA is equivalent to some FSM every FSM is equivalent to some DFA

NFA any number of start states and accepting states

An FSM accepts a word iff there is a trace from some start state q_{0} to some finish state q_{n} along transitions that spell out the word

An FSM accepts a word iff there is a trace from some start state q_{0} to some finish state q_{n} along transitions that spell out the word

An FSM accepts a string iff there is a trace from some start state q_{0} to some finish state q_{n} along transitions that spell out the string

An ε-FSM accepts a string iff there is a trace from some start state qo to some finish state q_{n} whose non- ε transitions spell out the string

An ε-FSM accepts a string iff there is a trace from some start state qo to some finish state q_{n} whose non- ε transitions spell out the string

An ε-FSM accepts a string iff there is a trace from some start state qo to some finish state q_{n} whose non- ε transitions spell out the string

If $R \subseteq(\Sigma \cup\{\varepsilon\})^{\star}$ is a regular language with the alphabet $\Sigma \cup\{\varepsilon\}$ (where $\varepsilon \notin \Sigma$) then $R / / \varepsilon=\{s / / \varepsilon \mid s \in R\}$ is regular where $s / / \varepsilon$ is
the result of removing every ε from s
often 'explained’ as
ε stands for the empty string
today we will use this theorem tomorrow we will prove it

a^{*}

b*
$>{ }^{\circ} \mathrm{b}$
$a * \mid b *$
??

(a|b) *
 $>00 \mathrm{a}, \mathrm{b}$

$a * \mid b *$
??

$a * \mid b *$

$a * \mid b *$

$\varepsilon-N F A$

any number of start and finish states
ε - transitions 'hidden actions' 'matching the empty string'

sequence
 RS

alternation $\mathrm{R} \mid \mathrm{S}$

iteration R^{*}

regular expressions

each regex is a pattern that matches a set of strings

- any character is a regex
- matches itself
- if R and S are regex, $s o$ is $R S$
- matches a match for R followed by a match for S
- if R and S are regex, so is $R \mid S$
- matches any match for R or \mathbf{S} (or both)
\bullet if R is a regex, so is R^{*}
matches any sequence of 0 or more matches for R

- The algebra of regular expressions also includes elements 0 and 1
- $0=\varnothing$ matches nothing; $1=\Sigma *$ matches everything
- $\varepsilon=\varnothing *$ matches the empty string

$$
\begin{array}{rl}
0|R=R| 0=R & 1|R=R| 1=1 \\
0 R=R 0=0 & \varepsilon R=R \varepsilon=R \\
\varepsilon=0^{*} & A^{*}=\varepsilon\left|A A^{*}=\varepsilon\right| A^{*} A
\end{array}
$$

the language of strings that match a regex, R, is recognised by some ε-FSM
regular language \equiv recognised by some FSM
DFA regular languages - closed under Boolean operation
ε-FSM-regular languages - closed under regex operations
regex languages - strings matching some regex

> FSM DFA $\varepsilon-F S M$
> all recognise the same languages
every regular language is defined by some regex
regex languages are closed under Boolean operations

