Informatics 1A

Computation and Logic 9

DPLL (an idea)

Michael P. Fourman

y @mp4man

searching
for satisfaction

A.J.AYER

LANGUAGE,
TRUTH AND
LOGIC

of
modern linguistic philosophy’
- Sunday Times

-— Predicates: 1sGreen 1sBig isMortal <sSocrates ...

Pred u :: u -> Bool

-— a unwtverse of things
things :: [Thing]

-— akF b every a satisfies b
(I=) :: Pred Thing -> Pred Thing -> Bool

a |=b=and[b x | x <~ things, a x]

-— logical operations on predicates

neg :: Pred u -> Pred u

(&:&) :: Pred u -> Pred u -> Pred u
(l:1) =:: Pred u -> Pred u -> Pred u
neg p = (\x -> not(p x))

p&&q= (\x —>px && q x)

pl:l 9= Qx >px |l qzx)

aEb aF b aZ—-b af#b

If a,b are predicates in some universe, a F b iff every a satisfies b;

in this case we say the statement a F b is valid;

otherwise, the statement a F b is invalid, and the statement a ¥ b is valid.
We interpret a # b as some a s not b.

mEpPp sFEm PEM SFEmM mEpPp mkFEs
barbara baroco bocardo
sEp sFEp sEp
mE-p sEmM pE—-m sFE-m , mFE-p mFEs _
celarent festino disamis
sFE —p SFEp s —p
pEM mE -s pE—-mMm mF s _ pFE-m mEs .
calemes fresison dimatis
sF—p SFED S —p
pEm Slzmcesare mE —p s}f—lmf , mEDp m}f—'Sd o
erio
sFE —p sFEp sFE —p atist
pEM sFE-m mE-p mkF s _ mEp sF-m N
camestres ferison darii

sF —p SFEp S —p

We extend the definition of F to allow a finite set of predicates on either side
of the turnstile

'EA

. We define validity for these sequents in terms of the relation given earlier for
individual predicates.

reA iff ATE\/A
Here, /\,\/ are the functions, bigAnd and bigQr, that give the conjunction and

disjunction of a finite set of predicates. In Haskell,

bigAnd gamma = (\x -> and[g x | g <- gamma])
biglr delta = (\x => or[d x | d <- delta 1)

If things is a list of every thing in the universe, we can define

gamma |= delta = and[or [d x | d <- delta]
| x <- things, and[g x | g <- gamma]]

every thing that satisfies all predicates g € I' satisfies some predicate d € A.

e a,b are predicates TN
in some universe; Coable A TEab A

I'A are finite sets TanbEA (AL) TFavbA (VR)
of predicates,
f LakA DbeA TEad TEbLA
o ', arefers to 'U{a}; T aviEA (VL) T (AR)
b, A refers to {b}UA.
. I'Fa, A I IakEA
e Each Of these rules is T —aF A (=L) T (—R)
sound in both
directions: all of the = A
— (L — (LR
statements above the ILLEA (L) I'EL1L,A (LR)
inference lines are valid PE A
iff all of the statements TTrA (TL) TET A (TR)

below the lines are valid.

F.,al=A,a(I)
Ta,bE A . I'Fa,b A B a/, C
anbEA avo,a

AT VD S o b,F —a,c a,bF c
i a’hAA (~L) % (-R)
b,mckF —a,c b,bF —a,c
—a.—-cVbE =qa.c b,—cV bFEF —a,c
9) ? 4

—aVb,—cVbF —a,c
(maVb)A(—cVb)F-aVec
= =((—maVb)A(—cVb)), (—aVc)
E—((-maVb)A(—cVb))V(-aVc)

Our two inference trees

tell two different stories ...

pFaq,p

E -p,q,p pED

F-pVg,p F -p,p

F(-pVqg A-p,p

F((-pVaq)A-p)Vp

Every branch is
terminated by an
iImmediate rule.

The sequent we
started from is
valid in every

universe!

a,bE c

b, -ckE —a,c b,bF —a,c

—-a, -cVbFE —a,c b, mcVbkFE —a,c

—aVb,—cVDbFE —a,c

(maVb)AN(—-cVDb)E -aVece

FE =((—maVvb)A(-cVDd)),(—aVec)

F =((—maVb)A(-cVb)V(-aVec)

Some branches lead to leaves,
sequences with only atoms,
in which no atom occurs on both
sides of the turnstile.
Our starting sequent is valid in
some universe U iff each of these
leaves is valid.

It is easy to construct a
counterexample to any one of
. these leaves.

Reduction using Gentzen Rules

show universal validity, or
provide counterexamples

compute L/R rules for other connectives
derive boolean equations
convert to CNF

Magic!

Boolean Algebra

zV(yVz)=(xVy)Vz cA(yYyNz)=(xAy)Az associative
zV(yANz)=(@VyAxVz) axA(yVz)=(@Ay)V(xAz) distributive
xVy=yVax TNYy=yANx commutative
xV0==x xN1l==x identity
xV1=1 xN0=0 annihilation
rVr==x rTANr=2x idempotent
xV-x=1 —xANx =0 complements
zV(xAy)==x rA(xVy) == absorbtion
—(xVy) =AYy —(x ANy)=—-xV -y de Morgan

Reduction using Gentzen Rules

show universal validity, or
provide counterexample

compute L/R rules for other connectives
convert to CNF

derive Boolean equations

?

= a /\ a

10

It is easy to find a counterexample

— — (]

= a /\ Qa

— but can we find an example?

Here we can easily see there is

no valuation
that makes both premises valid.

Other cases may not be so simple.

11

7 8 3 Does this sudoku problem
5 i have a solution?
5
21 | I 26 Can we find a solution?
3 8 .
1 5 We will produce a CNF
5 5 y sudoku = And rs
= . that expresses the rules
and a CNF
problem = And ps
a clause is a disjunction of literals that re,oresem‘s the ,orob/em
aFormisa coﬁj[;lrlscion of clauses
And cs such that an example of
aliteralisNaorPa And (rs ++ pS)

where ais an atom

IS a solution to the problem

12

sudoku is a toy problem

7 8 3
2 1

we will give an algorithm,
a version of DPLL (1962)

on modern hardware this
can solve sudoku problems
with 10 Ki clauses

modern SAT solvers can
handle problems with
10 Mi clauses

the general problem is
Boolean satisfiability SAT

IS there a state that
satisfies a given CNF ?

practical applications include
verification of
hardware, software,
finite state machines,
communication protocols
Al planning
genomics

13

Form ,

Clauses

- 70N)

-A B C -A D F A B E A B C

=-A,-B,C E-ADF EABUFE EAB,-C

= -A D F EARBE
F-A,-B,C ...F... E.. = A, B,C

LB N L E L. LU E L

'EA

14

data Literal a =P a | N a
newtype Clause a = Or [Literal a]
newtype Form a = And[Clause a]

neg :: Literal a -> Literal a

neg (P a) =N a

neg (N a) =P a

data Atom = A[B|C|D|WI|X|Y|Z deriving Eq

eg = And[Or[N A, NC, P D], Or[P A, P C], Or[N D]]
-- (—Av-CvVvD) AN (AvVvC) AN =D

type Val a = [Literal a]

15

Searching for a consistent set of literals, I'
such that
I'E-A -B,C I'E-A D, F I'FA B, FE I'=A B,-C
we say such a I' is a model of the CNF

Divide and conquer

a problem shared is a problem (almost)
solved

What if A is one of our literals?

=-A,-B.C E-ADF EABE EAB,-C

16

Searching for a consistent set of literals, I
such that
I'F-A-B,C I'E-AD,F I'FA B E ' A B,-C

Divide and conquer

a problem shared is a problem (almost) solved

What if A is one of our literals?

? ? ? ?
ATF-A-BC ATF-ADF ATEABE ATEA B —-C

17

Searching for a consistent set of literals, I
such that
I'F-A-B,C I'E-AD,F I'FA B E ' A B,-C

Divide and conquer

a problem shared is a problem (almost) solved

What if A is one of our literals?

ATE-B,C ATED,F
ATFE—-A-BC ATEF-ADF ATFABE ATFA B —C

18

Searching for a consistent set of literals, I
such that
I'F-A-B,C I'E-AD,F I'FA B E ' A B,-C

Divide and conquer

a problem shared is a problem (almost) solved

What if A is one of our literals?

T'e-B,C TED,F
ATFE-B.C ATED,F
ATF-A-B,C ATF-ADF ATFABTE ATEAB, -C

19

Searching for a consistent set of literals, I
such that
I'F-A-B,C I'E-AD,F I'FA B E ' A B,-C

Divide and conquer

a problem shared is a problem (almost) solved

What if =A is one of our literals?

? ? ? ?
AF-A-BC AF-ADF —-AFABE —-AFA B —C

20

Searching for a consistent set of literals, I
such that
I'F-A-B,C I'E-AD,F I'FA B E ' A B,-C

Divide and conquer

a problem shared is a problem (almost) solved

What if =A is one of our literals?

I'EBE 'k B,~C
~ATEBE —-ATEB -C
~ATF-A-B,C —-ATF-ADF -ATEFABE -ATEA B, ~C

21

re-B.c IfA repF
ATFE-B.C ATED,F
ATF-A-BC ATF-AD.F ATFABE ATFA B, —C

models [Clause Atom] -> [Val Atom]
models ([Or[N A, NB, PC], Or[N A, PD, P F]
, Or[PA, PB, PE], Or[PA, PB,NC1]11)
= [PA :m| m<-models [Or[NB, PC], Or
++
[NA:m | m<-models [Or[PB, PE], Or[P B, NC]]

Tomorrow we will turn this if A
idea into an algorithm I'EBE I'EB -C
-A.TEB.FE -A,TE B,-C
-ATE-A,-B,C -ATE-ADF -ATEABE -ATEAB,-C

22

